CivilBay                          
                             
 Home  > Steel  > Crane Runway Beam Design - AISC LRFD 2010 and ASD 2010
                                       
Skip Navigation Links                     ToolTip : 
Login

New Version
 
Try out new version at   Crane runway beam / monorail design to AISC 360-16

CRANE RUNWAY BEAM DESIGN - AISC LRFD 2010 and ASD 2010          

Result Summary                  
Overall         ratio = 0.83 OK  

Design Code Reference                  
Crane runway beam design based on           Code Abbreviation
CISC Guide for the Design of Crane-Supporting Steel Structures 2nd Edition CISC Crane Guide
AISC Design Guide 7: Industrial Buildings-Roofs to Anchor Rods 2nd Edition AISC Design Guide 7
CMAA 70-04 Specifications for Top Running Bridge and Gantry Type Multiple Girder Electric Overhead Traveling Cranes CMAA 70-04
                 
Crane Data                    
Select design code   =      
No of crane in the same aisle   =              
No of wheel on one side of bridge =              
                   
Crane rated capacity Wrc = [US Ton] = 40.0 [kips]    
Bridge weight Wbr = [kips] 29.6 kips = 25945 [kg]    
Trolley + hoist weight Wth = [kips] 3.6 kips = 4808 [kg]    
Bridge wheel spacing d1 = [ ft ]            
Max. static wheel load by vendor Pmax-v = [kips]            
Crane bridge span Sr = [ ft ]            
Min. hook approach left  SL = [ ft ] 3.1 ft          
  right  SR = [ ft ] 3.1 ft          
Runway CL to col CL distance left  eL = [ ft ] 1.6 ft          
  right  eR = [ ft ] 1.6 ft          
Crane runway beam span - ver L1-ver = [ ft ] beam span in ver direction, normally it's equal to building column spacing when there is no ver brace under runway beam
 
Crane runway beam span - hor L1-hor = [ ft ] beam span in hor direction, normally  Lhor < Lver  due to hor brace applying to side of runway beam close to top flange
Crane column CL to CL distance Sr + 2e = [ ft ]            
Runway Beam    
Runway beam section type   =  
W and C comb section size   =          
W27x84 + C15x33.9
Weight : 117.9 lb/ft
bf-w =10.000 d-w =26.700 tw-w =0.460 tf-w =0.640 bf-c =3.400 d-c =15.000 tw-c =0.400 tf-c =0.650 d-wc =27.100
All section dimensions are in inches          
Crane running type   =            
Crane rail size   = Ucr = 60 [lbs/yd]    
            = 0.020 [kip/ft]    
Rail base width Bw = 4.250 [in] Rail height Ht = 4.250 [in]    
W section yield strength fwy = [ksi]            
Cap channel or plate yield strength fcy = [ksi]            
CMAA crane service class   =    moderate service  
Vertical load impact factor   =              
Crane side thrust load option   =            
Crane side thrust load can be calculated using one of the following 4 options          
Option 1 Hs =   0.2 (Lifted Load+ Trolley/Hoist Wt)    
Option 2 Hs = max of 0.2 (Lifted Load+ Trolley/Hoist Wt)    
        0.1 (Lifted Load+ Entire Crane Wt)    
Option 3 Hs = max of 0.2 (Lifted Load+ Trolley/Hoist Wt)    
        0.1 (Lifted Load+ Entire Crane Wt)    
        0.4 Lifted Load    
Option 4 Hs =    1.0 x Lifted Load as side thrust    
Option 5 Hs =    2.0 x Lifted Load as side thrust    

Conclusion
                 
Crane Load Calculation         View Detail Calc

Crane Runway Beam Design - LRFD 2010 and ASD 2010  
      LRFD-10       ASD-10    

Overall ratio = 0.83 OK ratio = 0.83 OK View Detail Calc

Local buckling               OK  
Bending about the X-X axis  ratio = 0.47 OK ratio = 0.52 OK  
Bending about the Y-Y axis in the top flange - top running crane ratio = 0.13 OK ratio = 0.13 OK  
Biaxial bending in the top flange  ratio = 0.60 OK ratio = 0.64 OK  
Shear along Y-Y Axis  ratio 0.24 OK ratio = 0.26 OK  
Web sidesway buckling  ratio 0.60 OK ratio = 0.61 OK  

Runway beam vertical deflection         ratio = 0.83 OK  
Runway beam lateral deflection         ratio = 0.41 OK  

                   

ToolTip