CivilBay                          
                             
 Home  > Concrete  > Concrete Anchorage  > Shear Key or Shear Lug Design - Canada CISC Section
                                       
Skip Navigation Links                     ToolTip :  Login

                   
SHEAR LUG / SHEAR KEY DESIGN          

Result Summary                  
Overall         ratio = Infinity NG  

Design Code Reference                  
Shear Lug / Shear Key design based on              Code Abbreviation
ACI 349M-06 Code Requirements for Nuclear Safety-Related Concrete Structures & Commentary ACI 349M-06
AISC Design Guide 1: Base Plate and Anchor Rod Design 2nd Edition AISC Design Guide 1
CSA S16-14 Design of Steel Structures CSA S16-14
CSA A23.3-14 Design of Concrete Structures Annex D CSA A23.3-14
                Code Reference
Input Data                    
Shear key section type   =        
Shear key section size   =          
Shear key section properties d = 0.00 [mm] tf = 0.00 [mm]    
  bf = 0.00 [mm] tw = 0.00 [mm]    
  Zx = 0.0E+00 [mm3] Zy = 0.0E+00 [mm3]    
Shear key embed depth d = [mm]          
Factored shear along strong axis Vux = [kN]            
Factored shear along weak axis Vuy = [kN]            
 
 
Concrete pedestal width bc = [mm]          
Concrete pedestal depth dc = [mm]          
Concrete pedestal height ha = [mm]          
Grout thickness g = [mm]          
     
Concrete strength fc = [MPa]      
Shear key steel yield strength Fy = [MPa] A36 Fy=248 MPa    A992 Fy=345 MPa    
Shear key steel ultimate strength Fu = [MPa] A36 Fu=400 MPa    A992 Fu=448 MPa    
Shear key to base plate weld   =          
Weld electrode ultimate strength Xu = [MPa] E49XX   Xu=490 MPa    
Shear key to base plate fillet weld leg size Am = [mm]    8 mm    
Select design using or not using anchor reinforcement      
No of hor. rebar layer that are effective to resist anchor shear nlay =    
No of hor. rebar leg that are effective to resist anchor shear Vux nleg =    
Rebar specification   =        
Hor. rebar size No. = 12.7 [mm] single rebar area As = 129.0 [mm2]  
For anchor reinft shear breakout strength calc    
Rebar yield strength - hor. rebar fy-h = [MPa]        

CONCLUSION
                ACI 349M-06
Overall ratio = Infinity NG  
Concrete Bearing ratio = Infinity NG D.4.6.2
Anchor Reinforcement Shear Breakout Resistance ratio = 0.72 OK  
Shear Key Section Flexure Check ratio = Infinity NG  
Shear Key Section Shear Check ratio = Infinity NG  
Shear Key To Base Plate Fillet Weld ratio = Infinity NG  

CACULATION                  
Concrete Bearing         ACI 349M-06
Shear key width w =   = 0.0 [mm]  
Shear key bearing area Ab = w de = w (d-g) = 0 [mm2]  
  f = 0.65 for anchor controlled by concrete bearing D.4.4 (d)
Shear key bearing strength Vb = 1.3 f fc' Ab   = 0.0 [kN] D.4.6.2
  ratio = Infinity < Vux NG  
               
Shear Toward Free Edge              
Using anchor reinforcement option is selected to resist the concrete breakout.
Engineer has to provide hor. anchor reinforcement such as hor. hair pin or enclosed stirrup around the shear key pocket to resist the concrete breakout. When the non-enclosed or open hor. rebar such as hair pin is used, engineer has to ensure that the rebar has adequate development length ld or ldh on both sides of failure plane as shown in CSA A23.3-14 Figure D.17A
 
* For enclosed tie, at hook location the tie cannot develop full yield strength fy . Use the pullout resistance in
    tension of a single hooked bolt as per CSA A23.3-14  Eq D.17 as the max force can be developed at hook Th
* Assume 100% of hor. tie bars can develop full yield strength
Total number of hor tie bar  n = nleg (leg) x nlay (layer) = 12.0    
              CSA A23.3-14
Pull out resistance at hook Th = fc 0.9 fc' eh da Rt,c = 15.2 [kN] D.6.3.5  Eq D.17
  eh = 4.5 db = 57.2 [mm]  
Single tie bar tension resistance Tr = fs x fy-h x As = 38.6 [kN] D.7.2.9  Eq D.43
Total tie bar tension resistance Vnr = 1.0 x n x Tr = 463.0 [kN] D.4.3.6.4 & D.7.2.9
  ratio = 0.72 > Vux OK  
               
Shear Key Section Flexure & Shear Check        
Shear Key W Sect                  
Flexure Check - strong axis Mux =  Vux x [ 0.5x(d-g) + g ] = 38.0 [kNm]  
  Zx =   = 0.0E+00 [mm3]  
  f Mn = 0.9 x Zx x Fy = 0.0 [kNm]  
  ratio = Infinity < Mux NG  
Flexure Check - weak axis Muy =  Vuy x [ 0.5x(d-g) + g ] = 25.4 [kNm]  
  Zy =   = 0.0E+00 [mm3]  
  f Mn = 0.9 x Zy x Fy = 0.0 [kNm]  
  ratio = Infinity < Muy NG  
Shear Check - strong axis              
Effective shear area Aw = tw x d = 0 [mm2]  
  f Vn = 0.9 x Aw x 0.6Fy = 0.0 [kN]  
  ratio = Infinity < Vux NG  
Shear Check - weak axis              
Effective shear area Aw = 5/3 x tf x bf = 0 [mm2]  
  f Vn = 0.9 x Aw x 0.6Fy = 0.0 [kN]  
  ratio = Infinity < Vuy NG  
               
Shear Key To Base Plate Fillet Weld        
Resultant angle q =   = 90 [deg]      CSA S16-14
  fw = 0.67            13.1 h)
Weld metal shear strength vrw = 0.67fw(0.707Am) Xu (1+0.5 sin1.5q) = 1.87 [kN/mm]      13.13.2.2
Base metal shear strength vrm = 0.67 fw Am Fu = 1.61 [kN/mm]      13.13.2.2
Shear strength used for design vr = min ( vrw , vrm ) = 1.61 [kN/mm]    
Factored moment to base plate Mux = Vux x [ 0.5x(d-g) + g ] = 38.0 [kNm]  
  Muy = Vuy x [ 0.5x(d-g) + g ] = 25.4 [kNm]  
Shear Key W Sect              
  b = 0.0 [mm] d = 0.0 [mm]  
Strong Axis ft = Mux / (b x d + d2/3) = Infinity [kN/mm]  
  fv = Vux / (2xd) = Infinity [kN/mm]  
  fr  = = Infinity [kN/mm]  
  ratio = Infinity > vr NG  
Weak Axis ft = Muy / [(1xb2/6) x 4] = Infinity [kN/mm]  
  fv = Vuy / (4xb) = Infinity [kN/mm]  
  fr  = = Infinity [kN/mm]  
  ratio = Infinity > vr NG  

                   

ToolTip