CivilBay                          
                             
 Home  > Concrete  > Concrete Anchorage  > Shear Key or Shear Lug Design - US AISC Section
                                       
Skip Navigation Links                     ToolTip : 
Login

                   
SHEAR LUG / SHEAR KEY DESIGN          

Result Summary                  
Overall         ratio = 0.69 OK  

Design Code Reference                  
Shear Lug / Shear Key design based on              Code Abbreviation
ACI 349-06 Code Requirements for Nuclear Safety-Related Concrete Structures & Commentary ACI 349-06
AISC Design Guide 1: Base Plate and Anchor Rod Design 2nd Edition AISC Design Guide 1
AISC 360-10 Specification for Structural Steel Buildings AISC 360-10
                Code Reference
Input Data                    
Shear key section type   =        
Shear key section size   =          
Shear key section properties d = 9.000 [in] tf = 0.935 [in]    
  bf = 8.280 [in] tw = 0.570 [in]    
  Zx = 70.10 [in3] Zy = 32.70 [in3]    
Shear key embed depth d = [in]          
Factored shear along strong axis Vux = [kips]            
Factored shear along weak axis Vuy = [kips]            
 
 
Concrete pedestal width bc = [in]          
Concrete pedestal depth dc = [in]          
Concrete pedestal height ha = [in]          
Grout thickness g = [in]          
     
Concrete strength fc = [ksi]      
Shear key steel yield strength Fy = [ksi] A36 Fy=36ksi    A992 Fy=50ksi    
Shear key steel ultimate strength Fu = [ksi] A36 Fu=58ksi    A992 Fu=65ksi    
Shear key to base plate weld   =          
Weld electrode ultimate strength FEXX = [ksi] E70XX FEXX=70 ksi    
Shear key to base plate fillet weld leg size Am = [1/16 in]  5/16    
Select design using or not using anchor reinforcement      
No of hor. rebar layer that are effective to resist anchor shear nlay =    
No of hor. rebar leg that are effective to resist anchor shear Vux nleg =    
Hor. rebar size No. = 0.500 [in] dia single rebar area As = 0.200 [in2]  
For anchor reinft shear breakout strength calc    
Rebar yield strength - hor. rebar fy-h = [ksi]        

CONCLUSION
                ACI 349-06
Overall ratio = 0.69 OK  
Concrete Bearing ratio = 0.29 OK D.4.6.2
Anchor Reinforcement Shear Breakout Resistance ratio = 0.69 OK  
Shear Key Section Flexure Check ratio = 0.15 OK  
Shear Key Section Shear Check ratio = 0.54 OK  
Shear Key To Base Plate Fillet Weld ratio = 0.51 OK  

CACULATION                 ACI 349-06
Concrete Bearing          
Shear key width w =   = 8.28 [in]  
Shear key bearing area Ab = w de = w (d-g) = 57.96 [in2]  
  f = 0.65 for anchor controlled by concrete bearing D.4.4 (d)
Shear key bearing strength Vb = 1.3 f fc' Ab   = 254.68 [kips] D.4.6.2
  ratio = 0.29 > Vux OK  
               
Shear Toward Free Edge             ACI 349-06
Using anchor reinforcement option is selected to resist the concrete breakout.
Engineer has to provide hor. anchor reinforcement such as hor. hair pin or enclosed stirrup around the shear key pocket to resist the concrete breakout. When the non-enclosed or open hor. rebar such as hair pin is used, engineer has to ensure that the rebar has adequate development length ld or ldh on both sides of failure plane as shown in ACI 318-11 Fig. RD.6.2.9(a)
 
* For enclosed tie, at hook location the tie cannot develop full yield strength fy . Use the pullout resistance in
    tension of a single hooked bolt as per ACI 318-11 Eq. (D-15) as the max force can be developed at hook Th
* Assume 100% of hor. tie bars can develop full yield strength
Total number of hor tie bar  n = nleg (leg) x nlay (layer) = 12    
              ACI 318-11
Pull out resistance at hook Th = ft,c 0.9 fc' eh da = 3.95 [kips] D.5.3.5 (D-15)
  eh = 4.5 db = 2.250 [in]  
Single tie bar tension resistance Tr = fs x fy-h x As = 9.00 [kips]  
Total tie bar tension resistance fsVn = 1.0 x n x Tr = 108.00 [kips] D.3.3.5.4 & D.6.2.9
  ratio = 0.69 > Vux OK  
               
Shear Key Section Flexure & Shear Check        
Shear Key W Sect                  
Flexure Check - strong axis Mux =  Vux x [ 0.5x(d-g) + g ] = 337.5 [kip-in]  
  Zx =   = 70.10 [in3]  
  f Mn = 0.9 x Zx x Fy = 3154.5 [kip-in]  
  ratio = 0.11 > Mux OK  
Flexure Check - weak axis Muy =  Vuy x [ 0.5x(d-g) + g ] = 225.0 [kip-in]  
  Zy =   = 32.70 [in3]  
  f Mn = 0.9 x Zy x Fy = 1471.5 [kip-in]  
  ratio = 0.15 > Muy OK  
Shear Check - strong axis              
Effective shear area Aw = tw x d = 5.130 [in2]  
  f Vn = 0.9 x Aw x 0.6Fy = 138.51 [kips]  
  ratio = 0.54 > Vux OK  
Shear Check - weak axis              
Effective shear area Aw = 5/3 x tf x bf = 12.903 [in2]  
  f Vn = 0.9 x Aw x 0.6Fy = 348.38 [kips]  
  ratio = 0.14 > Vuy OK  
               
Shear Key To Base Plate Fillet Weld        
Resultant angle q =   = 90 [deg] AISC 360-10
Nominal fillet weld strength Fw = 0.6 FEXX (1.0+0.5 sin1.5q) = 63.00 [kips]     Eq J2-5
  f = 0.75        
Weld metal shear strength f rn1 = f ( 0.707 x Am ) x Fw = 10.44 [kips/in]     Eq J2-4
Base metal thickness t = key sect thickness = 0.570 [in]  
Base metal shear strength f rn2 = min [ 1.0(0.6Fy t) , 0.75(0.6Fu t) ] = 16.67 [kips/in]     Eq J4-3 & Eq J4-4
Shear strength used for design f rn = min ( f rn1 , f rn2 ) = 10.44 [kips/in]     Eq J2-2
Factored moment to base plate Mux = Vux x [ 0.5x(d-g) + g ] = 337.5 [kip-in]  
  Muy = Vuy x [ 0.5x(d-g) + g ] = 225.0 [kip-in]  
Shear Key W Sect              
  b = 8.280 [in] d = 9.000 [in]  
Strong Axis ft = Mux / (b x d + d2/3) = 3.32 [kips/in]  
  fv = Vux / (2xd) = 4.17 [kips/in]  
  fr  = = 5.33 [kips/in]  
  ratio = 0.51 < f rn OK  
Weak Axis ft = Muy / [(1xb2/6) x 4] = 4.92 [kips/in]  
  fv = Vuy / (4xb) = 1.51 [kips/in]  
  fr  = = 5.15 [kips/in]  
  ratio = 0.49 < f rn OK  

                   

ToolTip