Sketch
Vertical Brace Connection
Code=AISC 360-16 LRFD

 
 
 
 

Result Summary - Overall
Chevron Brace Connection
Code=AISC 360-16 LRFD

Result Summary - Overall
geometries & weld limitations = PASS
limit states max ratio 
1.26
FAIL
 
Seismic - SCBF   Load Case LC1 & LC2


 
Right Brace - Brace to Gusset
geometries & weld limitations = PASS
limit states max ratio 
0.97
PASS
 
Left Brace - Brace to Gusset
geometries & weld limitations = PASS
limit states max ratio 
0.97
PASS


 
Gusset to Beam
geometries & weld limitations = PASS
limit states max ratio 
1.26
FAIL
 
Seismic - SCBF   Load Case LC3 & LC4




 
Gusset to Beam
geometries & weld limitations = PASS
limit states max ratio 
1.08
FAIL
 
 
 

Seismic Calculation
Brace Seismic System = SCBF
Code=AISC 360-16 LRFD

Seismic Brace Axial Forces Calc & Design Cases Summary
 
Right Brace Section Properties & Member Data


Brace sect HSS6.875X0.500
Grade
 = A500 Gr.C Round
Fy
 = 46.0
[ksi]

 
Ratio of expected Fy to specified min Fy
Ry
 = 1.30
AISC 341-16  Table A3.1
 
Ag
 = 9.360
[in2]
ry
 = 2.272
[in]

E
 = 29000
[ksi]

 
Brace member length & effective length factor K
L
 = 144.0
[in]
K
 = 1.00

 
Right Brace Seismic Design Force in Tension


 
Brace expected yield strength in tension
Pet
 = Ry Fy Ag
 = 559.7
[kips]
AISC 341-16 F2.6c (1)
 
Right Brace seismic design force in tension
Ps_t
 = Pet
 = -559.7
[kips]
AISC 341-16 F2.6c (1)
 
Right Brace Seismic Design Force in Compression


 
Member length L & effective length factor K
L
 = 144.0
[in]
K
 = 1.00

 
Member radius of gyration & elastic modulus
r
 = 2.272
[in]
E
 = 29000
[ksi]

 
Member slenderness ratio
KL/r
 = K x L  / r
 = 63.37

 
Elastic buckling stress
Fe
 = 
π2 E/( KL/r )2
 = 71.27
[ksi]
AISC 15th  Eq E3-4
when  
KL/r
  ≤   4.71 (
E/Ry Fy
) 0.5 = 103.72
AISC 15th  E3
 
Critical stress
Fcr
 = 0.658 ( Ry Fy / Fe )  Ry Fy
 = 42.09
[ksi]
AISC 15th  Eq E3-2


 
Brace expected yield strength in compression
Pec
 = min ( Ry Fy Ag , 1.14 Fcr Ag )
 = 449.1
[kips]
AISC 341-16 F2.3
Brace force in compression
Pc
 = from user input in load section
 = 0.0
[kips]

 
Right Brace seismic design force in compression
Ps_ci
 = Pec
 = 449.1
[kips]
AISC 341-16 F2.6c (2)
 
Right Brace seismic design force in compression - post-buckling
Ps_cii
 = 0.3 x Pec
 = 134.7
[kips]
AISC 341-16 F2.3 (ii)
 


 
 
Left Brace Section Properties & Member Data


Brace sect HSS6.875X0.500
Grade
 = A500 Gr.C Round
Fy
 = 46.0
[ksi]

 
Ratio of expected Fy to specified min Fy
Ry
 = 1.30
AISC 341-16  Table A3.1
 
Ag
 = 9.360
[in2]
ry
 = 2.272
[in]

E
 = 29000
[ksi]

 
Brace member length & effective length factor K
L
 = 144.0
[in]
K
 = 1.00

 
Left Brace Seismic Design Force in Tension


 
Brace expected yield strength in tension
Pet
 = Ry Fy Ag
 = 559.7
[kips]
AISC 341-16 F2.6c (1)
 
Left Brace seismic design force in tension
Ps_t
 = Pet
 = -559.7
[kips]
AISC 341-16 F2.6c (1)
 
Left Brace Seismic Design Force in Compression


 
Member length L & effective length factor K
L
 = 144.0
[in]
K
 = 1.00

 
Member radius of gyration & elastic modulus
r
 = 2.272
[in]
E
 = 29000
[ksi]

 
Member slenderness ratio
KL/r
 = K x L  / r
 = 63.37

 
Elastic buckling stress
Fe
 = 
π2 E/( KL/r )2
 = 71.27
[ksi]
AISC 15th  Eq E3-4
when  
KL/r
  ≤   4.71 (
E/Ry Fy
) 0.5 = 103.72
AISC 15th  E3
 
Critical stress
Fcr
 = 0.658 ( Ry Fy / Fe )  Ry Fy
 = 42.09
[ksi]
AISC 15th  Eq E3-2


 
Brace expected yield strength in compression
Pec
 = min ( Ry Fy Ag , 1.14 Fcr Ag )
 = 449.1
[kips]
AISC 341-16 F2.3
Brace force in compression
Pc
 = from user input in load section
 = 0.0
[kips]

 
Left Brace seismic design force in compression
Ps_ci
 = Pec
 = 449.1
[kips]
AISC 341-16 F2.6c (2)
 
Left Brace seismic design force in compression - post-buckling
Ps_cii
 = 0.3 x Pec
 = 134.7
[kips]
AISC 341-16 F2.3 (ii)
 


 
Brace Axial Force Design Cases Summary


Refer to AISC 341-16 F2.3(i), LC1 & LC2 are the load cases in which all braces are assumed to resist forces corresponding to their expected strength in tension Ps_t   or in compression Ps_ci
 
F2.3(ii), LC3 & LC4 are the load cases in which all braces are assumed to resist forces corresponding to their
expected strength in tension Ps_t   and all braces in compression are assumed to resist their expected
compressive post-buckling strength Ps_cii
 
LC1       Right Brace   Ps_t =-559.7 kips (T)                   Left Brace   Ps_ci =449.1 kips (C)
AISC 341-16 F2.3(i)
 
LC2       Right Brace   Ps_ci =449.1 kips (C)                   Left Brace   Ps_t =-559.7 kips (T)
 
LC3       Right Brace   Ps_t =-559.7 kips (T)                   Left Brace   Ps_cii =134.7 kips (C)       post-buckling
AISC 341-16 F2.3(ii)
 
LC4       Right Brace   Ps_cii =134.7 kips (C)                   Left Brace   Ps_t =-559.7 kips (T)       post-buckling
 
 
 

 
Seismic - SCBF  LC1 & LC2  Gusset Interface Forces Calc
 


Brace Axial Force LC1


Refer to AISC DG29  Fig. 4-5 ~ Fig. 4-7 for all charts and definitions of variables and symbols shown in calculation below
 
Right brace axial force
P1
 = from seismic brace force calc
 = -559.7
[kips]
in tension
Right brace to hor line angle
θ1
 = from user input
 = 45.0
[°]

H1
 = -395.8
[kips]
V1
 = -395.8
[kips]



Left brace axial force
P2
 = from seismic brace force calc
 = 449.1
[kips]
in compression
Left brace to hor line angle
θ2
 = from user input
 = 45.0
[°]

H2
 = 317.6
[kips]
V2
 = 317.6
[kips]



L1
 = 27.000
[in]
L2
 = 27.000
[in]

L
 = L1 + L2
 = 54.000
[in]

Δ
 = ( L2 - L1 ) /2
 = 0.000
[in]

e
 = 11.050
[in]
h
 = 31.294
[in]

 
M1
 = -364.44
[kip-ft]
M2
 = -292.42
[kip-ft]

 
Forces on Section a-a
AISC DG29  Fig. 4-6
Shear
V
 = H1 - H2
 = -713.3
[kips]

Axial
N
 = V1 + V2
 = -78.2
[kips]
in tension
Moment
M
 = M1 + M2
 = -656.86
[kip-ft]

Forces on Section b-b
AISC DG29  Fig. 4-7
Shear
V'
 = 
1/2
( V1 + V2 ) +
M/0.5XL
- V1
 = 64.7
[kips]

Axial
N'
 = 
1/2
( H1 - H2 ) x -1 + H1
 = -39.1
[kips]
in tension
Moment
M'
 = 
L/8
(V1+V2 ) +
h/4
(H1-H2 ) +
M/2
 = 43.00
[kip-ft]

- V1 Δ - H1 (e +
h/2
)

 


Brace Axial Force LC2


Refer to AISC DG29  Fig. 4-5 ~ Fig. 4-7 for all charts and definitions of variables and symbols shown in calculation below
 
Right brace axial force
P1
 = from seismic brace force calc
 = 449.1
[kips]
in compression
Right brace to hor line angle
θ1
 = from user input
 = 45.0
[°]

H1
 = 317.6
[kips]
V1
 = 317.6
[kips]



Left brace axial force
P2
 = from seismic brace force calc
 = -559.7
[kips]
in tension
Left brace to hor line angle
θ2
 = from user input
 = 45.0
[°]

H2
 = -395.8
[kips]
V2
 = -395.8
[kips]



L1
 = 27.000
[in]
L2
 = 27.000
[in]

L
 = L1 + L2
 = 54.000
[in]

Δ
 = ( L2 - L1 ) /2
 = 0.000
[in]

e
 = 11.050
[in]
h
 = 31.294
[in]

 
M1
 = 292.42
[kip-ft]
M2
 = 364.44
[kip-ft]

 
Forces on Section a-a
AISC DG29  Fig. 4-6
Shear
V
 = H1 - H2
 = 713.3
[kips]

Axial
N
 = V1 + V2
 = -78.2
[kips]
in tension
Moment
M
 = M1 + M2
 = 656.86
[kip-ft]

Forces on Section b-b
AISC DG29  Fig. 4-7
Shear
V'
 = 
1/2
( V1 + V2 ) +
M/0.5XL
- V1
 = -64.7
[kips]

Axial
N'
 = 
1/2
( H1 - H2 ) x -1 + H1
 = -39.1
[kips]
in tension
Moment
M'
 = 
L/8
(V1+V2 ) +
h/4
(H1-H2 ) +
M/2
 = 43.00
[kip-ft]

- V1 Δ - H1 (e +
h/2
)

 
 

Right Brace - Brace to Gusset
Sect=HSS 6.875 x 0.500
P1 =-559.7 kips (T)
P2 =449.1 kips (C)
Code=AISC 360-16 LRFD

Result Summary
geometries & weld limitations = PASS
limit states max ratio 
0.97
PASS
 
 
Seismic SCBF Brace Highly Ductile Section Check
PASS
HSS Section Limiting Width-to-Thickness Ratio Check



 
Check HSS section limiting width-to-thickness ratio for HSS wall in compression as Highly Ductile section
per AISC Seismic Design Manual 3rd Ed Table 1-D
AISC SDM 3rd  Table 1-D
 
CHS sect HSS6.875X0.500
D
 = 6.875
[in]
t
 = 0.465
[in]

HSS sect HSS6.875X0.500
Fy
 = A500 Gr.C Round
 = 46.0
[ksi]

E
 = 29000
[ksi]

 
Ratio of expected Fy to specified min Fy
Ry
 = 1.30
AISC 341-16  Table A3.1
 


CHS width-to-thickness ratio limit
λhd
 = 0.053
E/Ry Fy
 = 25.70
AISC SDM 3rd  Table 1-D
CHS width-to-thickness ratio actual
D/t
 = D/t
 = 14.78

 ≤ λhd
OK
 
Brace Slot Effective Net Area Check
PASS
HSS With Reinforcing Plates Effective Net Area



CHS sect HSS6.875X0.500
D
 = 6.875
[in]
t
 = 0.465
[in]

Ag
 = 9.360
[in2]



Gusset plate thickness
tgp
 = from user input
 = 0.750
[in]

HSS cut slot width
w
 = tgp + 1/8"
 = 0.875
[in]

HSS brace net area
Anb
 = Ag - 2 w t
 = 8.546
[in2]



Reinforcing plate
wr
 = 1.250
[in]
tr
 = 1.250
[in]

Reinforcing plate area
Ar
 = wr x tr
 = 1.563
[in2]



CHS 1/2 net area A1 = 0.5Anb
A1
 = 4.273
[in2]
r1
 = 2.040
[in]

Reinforce plate
A2
 = 1.563
[in2]
r2
 = 4.063
[in]

 
Dist to centroid of comb sect
x
 = 
A1 r1 + A2 r2/A1 + A2
 = 2.582
[in]

Length of connection
L
 = 
 = 26.000
[in]

Shear lag factor
U
 = 1 - x / L
 = 0.901
AISC 15th  Table D3.1


Total net area
An
 = Anb + 2 x Ar
 = 11.671
[in2]

Total effective net area
Ae
 = U An
 = 10.512
[in2]



 
The brace effective net area shall not be less than the brace gross area
AISC 341-16 F2.5b (3)
 
HSS sect HSS6.875X0.500
Ag
 = brace gross area
 = 9.360
[in2]

Total brace effective net area
Ae
 = U An
 = 10.512
[in2]

 ≥ Ag
OK
AISC 341-16 F2.5b (3)


 
The specified minimum yield strength of the reinforce plate shall be at least the specified
minimum yield strength of the brace
AISC 341-16 F2.5b (3)(i)
 
HSS sect HSS6.875X0.500
Fy
 = A500 Gr.C Round
 = 46.0
[ksi]

Reinforce plate
Fyp
 = A992
 = 50.0
[ksi]

 ≥ Fy
OK
AISC 341-16 F2.5b (3)(i)
 
Brace Slot to Gusset Plate Weld Limitation Check
PASS
Min Fillet Weld Size


Thinner part joined thickness
t
 = 
 = 0.465
[in]

Min fillet weld size allowed
wmin
 = 
 = 0.188
[in]
AISC 15th  Table J2.4
Fillet weld size provided
w
 = 
 = 0.250
[in]

 ≥ wmin
OK
Min Fillet Weld Length


Fillet weld size provided
w
 = 
 = 0.250
[in]

Min fillet weld length allowed
Lmin
 = 4 x w
 = 1.000
[in]
AISC 15th  J2.2b
Min fillet weld length
L
 = 
 = 26.000
[in]

 ≥ Lmin
OK
 
 
 
 
Seismic SCBF LC1
Sect=HSS 6.875 x 0.500
P =-559.7 kips (T)
ratio = 0.97
PASS

 
HSS Brace Wall - Gusset PL - Shear Yield
ratio = 559.7 / 1735.2
0.32
PASS
HSS Brace Wall-Gusset Plate Shear Yielding



HSS sect HSS6.875X0.500 wall thick
t
 = 0.465
[in]
Fy
 = 46.0
[ksi]

HSS brace wall-gusset overlap length
L
 = 26.000
[in]

 
Ratio of expected Fy to specified min Fy
Ry
 = 1.30
AISC 341-16  Table A3.1


Beam axial load
Pu
 = from seismic load calc
 = 559.7
[kips]

 
HSS brace wall-gusset shear yielding
Rn
 = 0.6 Ry Fy t L x 4 walls
 = 1735.2
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 1735.2
[kips]

ratio
 = 0.32
 > Pu
OK
 
HSS Brace Wall - Gusset PL - Shear Rupture
ratio = 559.7 / 1619.1
0.35
PASS
HSS Brace Wall-Gusset Plate Shear Yielding



HSS sect HSS6.875X0.500 wall thick
t
 = 0.465
[in]
Fu
 = 62.0
[ksi]

HSS brace wall-gusset overlap length
L
 = 26.000
[in]

 
Ratio of expected Fu to specified min Fu
Rt
 = 1.20
AISC 341-16  Table A3.1


Beam axial load
Pu
 = from seismic load calc
 = 559.7
[kips]

 
HSS brace wall-gusset shear rupture
Rn
 = 0.6 Rt Fu t L x 4 walls
 = 2158.8
[kips]
AISC 15th  Eq J4-4
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-4
φ Rn
 = 
 = 1619.1
[kips]

ratio
 = 0.35
 > Pu
OK
 
 
Gusset Plate - Block Shear Rupture
ratio = 559.7 / 1128.9
0.50
PASS
Plate Block Shear - Center Strip



Plate thickness
tp
 = 0.750
[in]

Plate strength
Fy
 = 50.0
[ksi]
Fu
 = 65.0
[ksi]

C shape weld group size
width b
 = 26.000
[in]
depth d
 = 6.875
[in]

 


Gross area subject to shear
Agv
 = b tp x 2
 = 39.000
[in2]

Net area subject to shear
Anv
 = Agvb
 = 39.000
[in2]

Net area subject to tension
Ant
 = d tp
 = 5.156
[in2]



Block shear strength required
Vu
 = 
 = 559.7
[kips]

Uniform tension stress factor
Ubs
 = 1.00
AISC 15th  Fig C-J4.2
Bolt shear resistance provided
Rn
 = min (0.6Fu Anv , 0.6Fy Agv ) +
 = 1505.2
[kips]
AISC 15th  Eq J4-5
Ubs Fu Ant

Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-5
φ Rn
 = 
 = 1128.9
[kips]

ratio
 = 0.50
 > Vu
OK
 
 
Gusset Plate - Tensile Yield (Whitmore)
ratio = 559.7 / 992.6
0.56
PASS
Plate Tensile Yielding Check



Plate size
width bp
 = 29.411
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Ag
 = bp tp
 = 22.058
[in2]

Tensile force required
Pu
 = 
 = 559.7
[kips]

Plate tensile yielding strength
Rn
 = Fy Ag
 = 1102.9
[kips]
AISC 15th  Eq J4-1
Resistance factor-LRFD
φ
 = 0.90
AISC 15th  Eq J4-1
φ Rn
 = 
 = 992.6
[kips]

ratio
 = 0.56
 > Pu
OK
 
Gusset Plate - Tensile Rupture (Whitmore)
ratio = 559.7 / 1075.3
0.52
PASS
Plate Tensile Rupture Check



Plate size
width bp
 = 29.411
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in tension
Ant
 = bp tp
 = 22.058
[in2]

Tensile force required
Pu
 = 
 = 559.7
[kips]

Plate tensile rupture strength
Rn
 = Fu Ant
 = 1433.8
[kips]
AISC 15th  Eq J4-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-2
φ Rn
 = 
 = 1075.3
[kips]
AISC 15th  Eq J4-2
ratio
 = 0.52
 > Pu
OK
 
 
Brace Slot to Gusset Plate Weld Strength
ratio = 559.7 / 574.4
0.97
PASS
 
Fillet Weld Strength Check



Fillet weld leg size
w
 = 14
[in]
load angle θ
 = 0.0
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 2   for double fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.00
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 14.847
[kip/in]
AISC 15th  Eq 8-1


Base metal - brace
thickness t
 = 0.750
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - brace is in shear, shear rupture as per AISC 15th  Eq J4-4 is checked
AISC 15th  J2.4
Base metal shear rupture
Rn-b
 = 0.6 Fu t
 = 29.250
[kip/in]
AISC 15th  Eq J4-4


Double fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 14.847
[kip/in]
AISC 15th  Eq 9-2
 
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 11.135
[kip/in]



Shear resistance required
Vu
 = 
 = 559.7
[kips]



Fillet weld leg size
w
 = 14
[in]
max L
 = 26.000
[in]

when L/w = 104.0 >100 , weld length reduction applied
AISC 15th  J2.2b
Weld length reduction factor
β
 = 1.2 - 0.002 (L/w) ≤ 1.0
 = 0.99
AISC 15th  Eq J2-1
Weld length used for design
L
 = β x L
 = 51.584
[in]



Fillet weld length - double fillet
L
 = 
 = 51.584
[in]

Shear resistance provided
φ Fn
 = φ Rn x L
 = 574.4
[kips]

ratio
 = 0.97
 > Vu
OK
 
Reinforce Plate to Brace Wall Weld Strength
ratio = 85.9 / 96.0
0.89
PASS
Reinforcing plate
wr
 = 1.250
[in]
tr
 = 1.250
[in]

Fy
 = 50.0
[ksi]

 
Ratio of expected Fy to specified min Fy
Ry
 = 1.10
AISC 341-16  Table A3.1
 
Reinforcing plate area
Ar
 = wr x tr
 = 1.563
[in2]

 
Required strength of weld
Pu
 = Ry Fy Ar
 = 85.9
[kips]

 
Reinforce Plate to Brace Wall Fillet Weld Length
Longitudinal weld length
LL
 = reinforce plate length
 = 8.000
[in]

Transverse weld length
LT
 = reinforce plate width
 = 1.250
[in]

 
Total weld length - single fillet weld
L1
 = 2 x LL + LT
 = 17.250
[in]
AISC 15th  Eq J2-10a
L2
 = 0.85 x 2 x LL + 1.5 x LT
 = 15.475
[in]
AISC 15th  Eq J2-10b
L
 = max ( L1 , L2 )
 = 17.250
[in]
AISC 15th  J2.4 (c)
 
Fillet Weld Strength Check



Fillet weld leg size
w
 = 14
[in]
load angle θ
 = 0.0
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 1   for single fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.00
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 7.424
[kip/in]
AISC 15th  Eq 8-1


Base metal - reinforce plate
thickness t
 = 1.250
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - reinforce plate is in shear, shear rupture as per AISC 15th  Eq J4-4 is checked
AISC 15th  J2.4
Base metal shear rupture
Rn-b
 = 0.6 Fu t
 = 48.750
[kip/in]
AISC 15th  Eq J4-4


Single fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 7.424
[kip/in]
AISC 15th  Eq 9-2
 
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 5.568
[kip/in]



Shear resistance required
Pu
 = 
 = 85.9
[kips]

Fillet weld length - single fillet
L
 = 
 = 17.250
[in]

Shear resistance provided
φ Fn
 = φ Rn x L
 = 96.0
[kips]

ratio
 = 0.89
 > Pu
OK
 
 
 
Seismic SCBF LC2
Sect=HSS 6.875 x 0.500
P =449.1 kips (C)
ratio = 0.89
PASS

Gusset Plate - Compression (Whitmore)
ratio = 449.1 / 891.4
0.50
PASS
Plate Compression Check



Plate size
width bp
 = 29.411
[in]
thickness tp
 = 0.750
[in]

Fy
 = 50.0
[ksi]
E
 = 29000
[ksi]

Plate gross area in compression
Ag
 = bp tp
 = 22.058
[in2]



Plate radius of gyration
r
 = tp / 12
 = 0.217
[in]

Plate effective length factor
K
 = 
 = 0.65
Plate unbraced length
Lu
 = 
 = 12.778
[in]

Plate slenderness
KL/r
 = 0.65 x Lu  / r
 = 38.36



when  
KL/r
  >  25 , use Chapter E
AISC 15th  J4.4 (b)
Elastic buckling stress
Fe
 = 
π2 E/( KL/r )2
 = 194.49
[ksi]
AISC 15th  Eq E3-4
when  
KL/r
  ≤ 4.71 (
E/Fy
) 0.5 = 113.43
AISC 15th  E3 (a)
Critical stress
Fcr
 = 0.658 ( Fy / Fe )   Fy
 = 44.90
[ksi]
AISC 15th  Eq E3-2


Plate compression required
Pu
 = Pc = 449.1
 = 449.1
[kips]

Plate compression provided
Rn
 = Fcr x Ag
 = 990.4
[kips]
AISC 15th  Eq E3-1
Resistance factor-LRFD
φ
 = 0.90
AISC 15th  E1
φ Rn
 = 
 = 891.4
[kips]

ratio
 = 0.50
 > Pu
OK
 
 
Brace Slot to Gusset Plate Weld Strength
ratio = 449.1 / 574.4
0.78
PASS
 
Fillet Weld Strength Check



Fillet weld leg size
w
 = 14
[in]
load angle θ
 = 0.0
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 2   for double fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.00
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 14.847
[kip/in]
AISC 15th  Eq 8-1


Base metal - brace
thickness t
 = 0.750
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - brace is in shear, shear rupture as per AISC 15th  Eq J4-4 is checked
AISC 15th  J2.4
Base metal shear rupture
Rn-b
 = 0.6 Fu t
 = 29.250
[kip/in]
AISC 15th  Eq J4-4


Double fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 14.847
[kip/in]
AISC 15th  Eq 9-2
 
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 11.135
[kip/in]



Shear resistance required
Vu
 = 
 = 449.1
[kips]



Fillet weld leg size
w
 = 14
[in]
max L
 = 26.000
[in]

when L/w = 104.0 >100 , weld length reduction applied
AISC 15th  J2.2b
Weld length reduction factor
β
 = 1.2 - 0.002 (L/w) ≤ 1.0
 = 0.99
AISC 15th  Eq J2-1
Weld length used for design
L
 = β x L
 = 51.584
[in]



Fillet weld length - double fillet
L
 = 
 = 51.584
[in]

Shear resistance provided
φ Fn
 = φ Rn x L
 = 574.4
[kips]

ratio
 = 0.78
 > Vu
OK
 
Reinforce Plate to Brace Wall Weld Strength
ratio = 85.9 / 96.0
0.89
PASS
Reinforcing plate
wr
 = 1.250
[in]
tr
 = 1.250
[in]

Fy
 = 50.0
[ksi]

 
Ratio of expected Fy to specified min Fy
Ry
 = 1.10
AISC 341-16  Table A3.1
 
Reinforcing plate area
Ar
 = wr x tr
 = 1.563
[in2]

 
Required strength of weld
Pu
 = Ry Fy Ar
 = 85.9
[kips]

 
Reinforce Plate to Brace Wall Fillet Weld Length
Longitudinal weld length
LL
 = reinforce plate length
 = 8.000
[in]

Transverse weld length
LT
 = reinforce plate width
 = 1.250
[in]

 
Total weld length - single fillet weld
L1
 = 2 x LL + LT
 = 17.250
[in]
AISC 15th  Eq J2-10a
L2
 = 0.85 x 2 x LL + 1.5 x LT
 = 15.475
[in]
AISC 15th  Eq J2-10b
L
 = max ( L1 , L2 )
 = 17.250
[in]
AISC 15th  J2.4 (c)
 
Fillet Weld Strength Check



Fillet weld leg size
w
 = 14
[in]
load angle θ
 = 0.0
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 1   for single fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.00
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 7.424
[kip/in]
AISC 15th  Eq 8-1


Base metal - reinforce plate
thickness t
 = 1.250
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - reinforce plate is in shear, shear rupture as per AISC 15th  Eq J4-4 is checked
AISC 15th  J2.4
Base metal shear rupture
Rn-b
 = 0.6 Fu t
 = 48.750
[kip/in]
AISC 15th  Eq J4-4


Single fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 7.424
[kip/in]
AISC 15th  Eq 9-2
 
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 5.568
[kip/in]



Shear resistance required
Pu
 = 
 = 85.9
[kips]

Fillet weld length - single fillet
L
 = 
 = 17.250
[in]

Shear resistance provided
φ Fn
 = φ Rn x L
 = 96.0
[kips]

ratio
 = 0.89
 > Pu
OK
 
 
 

Left Brace - Brace to Gusset
Sect=HSS 6.875 x 0.500
P1 =449.1 kips (C)
P2 =-559.7 kips (T)
Code=AISC 360-16 LRFD

Result Summary
geometries & weld limitations = PASS
limit states max ratio 
0.97
PASS
 
 
Seismic SCBF Brace Highly Ductile Section Check
PASS
HSS Section Limiting Width-to-Thickness Ratio Check



 
Check HSS section limiting width-to-thickness ratio for HSS wall in compression as Highly Ductile section
per AISC Seismic Design Manual 3rd Ed Table 1-D
AISC SDM 3rd  Table 1-D
 
CHS sect HSS6.875X0.500
D
 = 6.875
[in]
t
 = 0.465
[in]

HSS sect HSS6.875X0.500
Fy
 = A500 Gr.C Round
 = 46.0
[ksi]

E
 = 29000
[ksi]

 
Ratio of expected Fy to specified min Fy
Ry
 = 1.30
AISC 341-16  Table A3.1
 


CHS width-to-thickness ratio limit
λhd
 = 0.053
E/Ry Fy
 = 25.70
AISC SDM 3rd  Table 1-D
CHS width-to-thickness ratio actual
D/t
 = D/t
 = 14.78

 ≤ λhd
OK
 
Brace Slot Effective Net Area Check
PASS
HSS With Reinforcing Plates Effective Net Area



CHS sect HSS6.875X0.500
D
 = 6.875
[in]
t
 = 0.465
[in]

Ag
 = 9.360
[in2]



Gusset plate thickness
tgp
 = from user input
 = 0.750
[in]

HSS cut slot width
w
 = tgp + 1/8"
 = 0.875
[in]

HSS brace net area
Anb
 = Ag - 2 w t
 = 8.546
[in2]



Reinforcing plate
wr
 = 1.250
[in]
tr
 = 1.250
[in]

Reinforcing plate area
Ar
 = wr x tr
 = 1.563
[in2]



CHS 1/2 net area A1 = 0.5Anb
A1
 = 4.273
[in2]
r1
 = 2.040
[in]

Reinforce plate
A2
 = 1.563
[in2]
r2
 = 4.063
[in]

 
Dist to centroid of comb sect
x
 = 
A1 r1 + A2 r2/A1 + A2
 = 2.582
[in]

Length of connection
L
 = 
 = 26.000
[in]

Shear lag factor
U
 = 1 - x / L
 = 0.901
AISC 15th  Table D3.1


Total net area
An
 = Anb + 2 x Ar
 = 11.671
[in2]

Total effective net area
Ae
 = U An
 = 10.512
[in2]



 
The brace effective net area shall not be less than the brace gross area
AISC 341-16 F2.5b (3)
 
HSS sect HSS6.875X0.500
Ag
 = brace gross area
 = 9.360
[in2]

Total brace effective net area
Ae
 = U An
 = 10.512
[in2]

 ≥ Ag
OK
AISC 341-16 F2.5b (3)


 
The specified minimum yield strength of the reinforce plate shall be at least the specified
minimum yield strength of the brace
AISC 341-16 F2.5b (3)(i)
 
HSS sect HSS6.875X0.500
Fy
 = A500 Gr.C Round
 = 46.0
[ksi]

Reinforce plate
Fyp
 = A992
 = 50.0
[ksi]

 ≥ Fy
OK
AISC 341-16 F2.5b (3)(i)
 
Brace Slot to Gusset Plate Weld Limitation Check
PASS
Min Fillet Weld Size


Thinner part joined thickness
t
 = 
 = 0.465
[in]

Min fillet weld size allowed
wmin
 = 
 = 0.188
[in]
AISC 15th  Table J2.4
Fillet weld size provided
w
 = 
 = 0.250
[in]

 ≥ wmin
OK
Min Fillet Weld Length


Fillet weld size provided
w
 = 
 = 0.250
[in]

Min fillet weld length allowed
Lmin
 = 4 x w
 = 1.000
[in]
AISC 15th  J2.2b
Min fillet weld length
L
 = 
 = 26.000
[in]

 ≥ Lmin
OK
 
 
 
 
Seismic SCBF LC1
Sect=HSS 6.875 x 0.500
P =449.1 kips (C)
ratio = 0.89
PASS

Gusset Plate - Compression (Whitmore)
ratio = 449.1 / 891.4
0.50
PASS
Plate Compression Check



Plate size
width bp
 = 29.411
[in]
thickness tp
 = 0.750
[in]

Fy
 = 50.0
[ksi]
E
 = 29000
[ksi]

Plate gross area in compression
Ag
 = bp tp
 = 22.058
[in2]



Plate radius of gyration
r
 = tp / 12
 = 0.217
[in]

Plate effective length factor
K
 = 
 = 0.65
Plate unbraced length
Lu
 = 
 = 12.778
[in]

Plate slenderness
KL/r
 = 0.65 x Lu  / r
 = 38.36



when  
KL/r
  >  25 , use Chapter E
AISC 15th  J4.4 (b)
Elastic buckling stress
Fe
 = 
π2 E/( KL/r )2
 = 194.49
[ksi]
AISC 15th  Eq E3-4
when  
KL/r
  ≤ 4.71 (
E/Fy
) 0.5 = 113.43
AISC 15th  E3 (a)
Critical stress
Fcr
 = 0.658 ( Fy / Fe )   Fy
 = 44.90
[ksi]
AISC 15th  Eq E3-2


Plate compression required
Pu
 = Pc = 449.1
 = 449.1
[kips]

Plate compression provided
Rn
 = Fcr x Ag
 = 990.4
[kips]
AISC 15th  Eq E3-1
Resistance factor-LRFD
φ
 = 0.90
AISC 15th  E1
φ Rn
 = 
 = 891.4
[kips]

ratio
 = 0.50
 > Pu
OK
 
 
Brace Slot to Gusset Plate Weld Strength
ratio = 449.1 / 574.4
0.78
PASS
 
Fillet Weld Strength Check



Fillet weld leg size
w
 = 14
[in]
load angle θ
 = 0.0
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 2   for double fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.00
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 14.847
[kip/in]
AISC 15th  Eq 8-1


Base metal - brace
thickness t
 = 0.750
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - brace is in shear, shear rupture as per AISC 15th  Eq J4-4 is checked
AISC 15th  J2.4
Base metal shear rupture
Rn-b
 = 0.6 Fu t
 = 29.250
[kip/in]
AISC 15th  Eq J4-4


Double fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 14.847
[kip/in]
AISC 15th  Eq 9-2
 
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 11.135
[kip/in]



Shear resistance required
Vu
 = 
 = 449.1
[kips]



Fillet weld leg size
w
 = 14
[in]
max L
 = 26.000
[in]

when L/w = 104.0 >100 , weld length reduction applied
AISC 15th  J2.2b
Weld length reduction factor
β
 = 1.2 - 0.002 (L/w) ≤ 1.0
 = 0.99
AISC 15th  Eq J2-1
Weld length used for design
L
 = β x L
 = 51.584
[in]



Fillet weld length - double fillet
L
 = 
 = 51.584
[in]

Shear resistance provided
φ Fn
 = φ Rn x L
 = 574.4
[kips]

ratio
 = 0.78
 > Vu
OK
 
Reinforce Plate to Brace Wall Weld Strength
ratio = 85.9 / 96.0
0.89
PASS
Reinforcing plate
wr
 = 1.250
[in]
tr
 = 1.250
[in]

Fy
 = 50.0
[ksi]

 
Ratio of expected Fy to specified min Fy
Ry
 = 1.10
AISC 341-16  Table A3.1
 
Reinforcing plate area
Ar
 = wr x tr
 = 1.563
[in2]

 
Required strength of weld
Pu
 = Ry Fy Ar
 = 85.9
[kips]

 
Reinforce Plate to Brace Wall Fillet Weld Length
Longitudinal weld length
LL
 = reinforce plate length
 = 8.000
[in]

Transverse weld length
LT
 = reinforce plate width
 = 1.250
[in]

 
Total weld length - single fillet weld
L1
 = 2 x LL + LT
 = 17.250
[in]
AISC 15th  Eq J2-10a
L2
 = 0.85 x 2 x LL + 1.5 x LT
 = 15.475
[in]
AISC 15th  Eq J2-10b
L
 = max ( L1 , L2 )
 = 17.250
[in]
AISC 15th  J2.4 (c)
 
Fillet Weld Strength Check



Fillet weld leg size
w
 = 14
[in]
load angle θ
 = 0.0
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 1   for single fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.00
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 7.424
[kip/in]
AISC 15th  Eq 8-1


Base metal - reinforce plate
thickness t
 = 1.250
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - reinforce plate is in shear, shear rupture as per AISC 15th  Eq J4-4 is checked
AISC 15th  J2.4
Base metal shear rupture
Rn-b
 = 0.6 Fu t
 = 48.750
[kip/in]
AISC 15th  Eq J4-4


Single fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 7.424
[kip/in]
AISC 15th  Eq 9-2
 
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 5.568
[kip/in]



Shear resistance required
Pu
 = 
 = 85.9
[kips]

Fillet weld length - single fillet
L
 = 
 = 17.250
[in]

Shear resistance provided
φ Fn
 = φ Rn x L
 = 96.0
[kips]

ratio
 = 0.89
 > Pu
OK
 
 
 
Seismic SCBF LC2
Sect=HSS 6.875 x 0.500
P =-559.7 kips (T)
ratio = 0.97
PASS

 
HSS Brace Wall - Gusset PL - Shear Yield
ratio = 559.7 / 1735.2
0.32
PASS
HSS Brace Wall-Gusset Plate Shear Yielding



HSS sect HSS6.875X0.500 wall thick
t
 = 0.465
[in]
Fy
 = 46.0
[ksi]

HSS brace wall-gusset overlap length
L
 = 26.000
[in]

 
Ratio of expected Fy to specified min Fy
Ry
 = 1.30
AISC 341-16  Table A3.1


Beam axial load
Pu
 = from seismic load calc
 = 559.7
[kips]

 
HSS brace wall-gusset shear yielding
Rn
 = 0.6 Ry Fy t L x 4 walls
 = 1735.2
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 1735.2
[kips]

ratio
 = 0.32
 > Pu
OK
 
HSS Brace Wall - Gusset PL - Shear Rupture
ratio = 559.7 / 1619.1
0.35
PASS
HSS Brace Wall-Gusset Plate Shear Yielding



HSS sect HSS6.875X0.500 wall thick
t
 = 0.465
[in]
Fu
 = 62.0
[ksi]

HSS brace wall-gusset overlap length
L
 = 26.000
[in]

 
Ratio of expected Fu to specified min Fu
Rt
 = 1.20
AISC 341-16  Table A3.1


Beam axial load
Pu
 = from seismic load calc
 = 559.7
[kips]

 
HSS brace wall-gusset shear rupture
Rn
 = 0.6 Rt Fu t L x 4 walls
 = 2158.8
[kips]
AISC 15th  Eq J4-4
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-4
φ Rn
 = 
 = 1619.1
[kips]

ratio
 = 0.35
 > Pu
OK
 
 
Gusset Plate - Block Shear Rupture
ratio = 559.7 / 1128.9
0.50
PASS
Plate Block Shear - Center Strip



Plate thickness
tp
 = 0.750
[in]

Plate strength
Fy
 = 50.0
[ksi]
Fu
 = 65.0
[ksi]

C shape weld group size
width b
 = 26.000
[in]
depth d
 = 6.875
[in]

 


Gross area subject to shear
Agv
 = b tp x 2
 = 39.000
[in2]

Net area subject to shear
Anv
 = Agvb
 = 39.000
[in2]

Net area subject to tension
Ant
 = d tp
 = 5.156
[in2]



Block shear strength required
Vu
 = 
 = 559.7
[kips]

Uniform tension stress factor
Ubs
 = 1.00
AISC 15th  Fig C-J4.2
Bolt shear resistance provided
Rn
 = min (0.6Fu Anv , 0.6Fy Agv ) +
 = 1505.2
[kips]
AISC 15th  Eq J4-5
Ubs Fu Ant

Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-5
φ Rn
 = 
 = 1128.9
[kips]

ratio
 = 0.50
 > Vu
OK
 
 
Gusset Plate - Tensile Yield (Whitmore)
ratio = 559.7 / 992.6
0.56
PASS
Plate Tensile Yielding Check



Plate size
width bp
 = 29.411
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Ag
 = bp tp
 = 22.058
[in2]

Tensile force required
Pu
 = 
 = 559.7
[kips]

Plate tensile yielding strength
Rn
 = Fy Ag
 = 1102.9
[kips]
AISC 15th  Eq J4-1
Resistance factor-LRFD
φ
 = 0.90
AISC 15th  Eq J4-1
φ Rn
 = 
 = 992.6
[kips]

ratio
 = 0.56
 > Pu
OK
 
Gusset Plate - Tensile Rupture (Whitmore)
ratio = 559.7 / 1075.3
0.52
PASS
Plate Tensile Rupture Check



Plate size
width bp
 = 29.411
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in tension
Ant
 = bp tp
 = 22.058
[in2]

Tensile force required
Pu
 = 
 = 559.7
[kips]

Plate tensile rupture strength
Rn
 = Fu Ant
 = 1433.8
[kips]
AISC 15th  Eq J4-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-2
φ Rn
 = 
 = 1075.3
[kips]
AISC 15th  Eq J4-2
ratio
 = 0.52
 > Pu
OK
 
 
Brace Slot to Gusset Plate Weld Strength
ratio = 559.7 / 574.4
0.97
PASS
 
Fillet Weld Strength Check



Fillet weld leg size
w
 = 14
[in]
load angle θ
 = 0.0
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 2   for double fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.00
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 14.847
[kip/in]
AISC 15th  Eq 8-1


Base metal - brace
thickness t
 = 0.750
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - brace is in shear, shear rupture as per AISC 15th  Eq J4-4 is checked
AISC 15th  J2.4
Base metal shear rupture
Rn-b
 = 0.6 Fu t
 = 29.250
[kip/in]
AISC 15th  Eq J4-4


Double fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 14.847
[kip/in]
AISC 15th  Eq 9-2
 
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 11.135
[kip/in]



Shear resistance required
Vu
 = 
 = 559.7
[kips]



Fillet weld leg size
w
 = 14
[in]
max L
 = 26.000
[in]

when L/w = 104.0 >100 , weld length reduction applied
AISC 15th  J2.2b
Weld length reduction factor
β
 = 1.2 - 0.002 (L/w) ≤ 1.0
 = 0.99
AISC 15th  Eq J2-1
Weld length used for design
L
 = β x L
 = 51.584
[in]



Fillet weld length - double fillet
L
 = 
 = 51.584
[in]

Shear resistance provided
φ Fn
 = φ Rn x L
 = 574.4
[kips]

ratio
 = 0.97
 > Vu
OK
 
Reinforce Plate to Brace Wall Weld Strength
ratio = 85.9 / 96.0
0.89
PASS
Reinforcing plate
wr
 = 1.250
[in]
tr
 = 1.250
[in]

Fy
 = 50.0
[ksi]

 
Ratio of expected Fy to specified min Fy
Ry
 = 1.10
AISC 341-16  Table A3.1
 
Reinforcing plate area
Ar
 = wr x tr
 = 1.563
[in2]

 
Required strength of weld
Pu
 = Ry Fy Ar
 = 85.9
[kips]

 
Reinforce Plate to Brace Wall Fillet Weld Length
Longitudinal weld length
LL
 = reinforce plate length
 = 8.000
[in]

Transverse weld length
LT
 = reinforce plate width
 = 1.250
[in]

 
Total weld length - single fillet weld
L1
 = 2 x LL + LT
 = 17.250
[in]
AISC 15th  Eq J2-10a
L2
 = 0.85 x 2 x LL + 1.5 x LT
 = 15.475
[in]
AISC 15th  Eq J2-10b
L
 = max ( L1 , L2 )
 = 17.250
[in]
AISC 15th  J2.4 (c)
 
Fillet Weld Strength Check



Fillet weld leg size
w
 = 14
[in]
load angle θ
 = 0.0
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 1   for single fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.00
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 7.424
[kip/in]
AISC 15th  Eq 8-1


Base metal - reinforce plate
thickness t
 = 1.250
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - reinforce plate is in shear, shear rupture as per AISC 15th  Eq J4-4 is checked
AISC 15th  J2.4
Base metal shear rupture
Rn-b
 = 0.6 Fu t
 = 48.750
[kip/in]
AISC 15th  Eq J4-4


Single fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 7.424
[kip/in]
AISC 15th  Eq 9-2
 
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 5.568
[kip/in]



Shear resistance required
Pu
 = 
 = 85.9
[kips]

Fillet weld length - single fillet
L
 = 
 = 17.250
[in]

Shear resistance provided
φ Fn
 = φ Rn x L
 = 96.0
[kips]

ratio
 = 0.89
 > Pu
OK
 
 
 

Gusset to Beam
Direct Weld Connection
Code=AISC 360-16 LRFD

Result Summary
geometries & weld limitations = PASS
limit states max ratio 
1.26
FAIL
 
 
Weld Limitation Checks - Gusset to Beam
PASS
Min Fillet Weld Size


Thinner part joined thickness
t
 = 
 = 0.750
[in]

Min fillet weld size allowed
wmin
 = 
 = 0.250
[in]
AISC 15th  Table J2.4
Fillet weld size provided
w
 = 
 = 0.438
[in]

 ≥ wmin
OK
Min Fillet Weld Length


Fillet weld size provided
w
 = 
 = 0.438
[in]

Min fillet weld length allowed
Lmin
 = 4 x w
 = 1.750
[in]
AISC 15th  J2.2b
Min fillet weld length
L
 = 
 = 84.686
[in]

 ≥ Lmin
OK
 
 
 
 
Brace Force LC1
PR= -559.7 kips (T)
PL= 449.1 kips (C)
ratio = 1.26
FAIL

Gusset Plate - Shear Yielding (Sect a-a)
ratio = 713.3 / 1215.0
0.59
PASS
Plate Shear Yielding Check



Plate size
width bp
 = 54.000
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Agv
 = bp tp
 = 40.500
[in2]

Shear force required
Vu
 = 
 = 713.3
[kips]

Plate shear yielding strength
Rn
 = 0.6 Fy Agv
 = 1215.0
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 1215.0
[kips]

ratio
 = 0.59
 > Vu
OK
 
Gusset Plate - Shear Rupture (Sect a-a)
ratio = 713.3 / 1184.6
0.60
PASS
Plate Shear Rupture Check



Plate size
width bp
 = 54.000
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in shear
Anv
 = bp tp
 = 40.500
[in2]

Shear force in demand
Vu
 = 
 = 713.3
[kips]

Plate shear rupture strength
Rn
 = 0.6 Fu Anv
 = 1579.5
[kips]
AISC 15th  Eq J4-4
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-4
φ Rn
 = 
 = 1184.6
[kips]

ratio
 = 0.60
 > Vu
OK
 
 
Gusset Plate - Axial Tensile Yield (Sect a-a)
ratio = 662.1 / 1822.5
0.36
PASS
Gusset Edge Equivalent Normal Force


Refer to AISC DG29  Fig. B-1 for formula below to calculate gusset edge equivalent normal force
 
Gusset edge axial force
N
 = 
 = -78.2
[kips]

Gusset edge moment force
M
 = 
 = 656.86
[kip-ft]

Gusset edge interface length
L
 = 
 = 54.000
[in]

Gusset edge equivalent normal force
Ne
 = N -
4 M/L
 = -662.1
[kips]
AISC DG29  Fig B-1


Plate Tensile Yielding Check



Plate size
width bp
 = 54.000
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Ag
 = bp tp
 = 40.500
[in2]

Tensile force required
Pu
 = 
 = 662.1
[kips]

Plate tensile yielding strength
Rn
 = Fy Ag
 = 2025.0
[kips]
AISC 15th  Eq J4-1
Resistance factor-LRFD
φ
 = 0.90
AISC 15th  Eq J4-1
φ Rn
 = 
 = 1822.5
[kips]

ratio
 = 0.36
 > Pu
OK
 
Gusset Plate - Axial Tensile Rupture (Sect a-a)
ratio = 662.1 / 1974.4
0.34
PASS
Gusset Edge Equivalent Normal Force


Refer to AISC DG29  Fig. B-1 for formula below to calculate gusset edge equivalent normal force
 
Gusset edge axial force
N
 = 
 = -78.2
[kips]

Gusset edge moment force
M
 = 
 = 656.86
[kip-ft]

Gusset edge interface length
L
 = 
 = 54.000
[in]

Gusset edge equivalent normal force
Ne
 = N -
4 M/L
 = -662.1
[kips]
AISC DG29  Fig B-1


Plate Tensile Rupture Check



Plate size
width bp
 = 54.000
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in tension
Ant
 = bp tp
 = 40.500
[in2]

Tensile force required
Pu
 = 
 = 662.1
[kips]

Plate tensile rupture strength
Rn
 = Fu Ant
 = 2632.5
[kips]
AISC 15th  Eq J4-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-2
φ Rn
 = 
 = 1974.4
[kips]
AISC 15th  Eq J4-2
ratio
 = 0.34
 > Pu
OK
 
 
Gusset Plate - Flexural Yield Interact (Sect a-a)
ratio =
0.48
PASS
Gusset plate
width bp
 = 54.000
[in]
thick tp
 = 0.750
[in]

yield Fy
 = 50.0
[ksi]

Shear plate - gross area
Ag
 = bp x tp
 = 40.500
[in2]

Shear plate - plastic modulus
Zp
 = ( bp x t2p ) / 4
 = 546.75
[in3]

Flexural strength available
Mc
 = φ Fy Zp     φ=0.90
 = 2050.31
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 656.86
[kip-ft]

 
Axial strength available
Pc
 = from axial tensile yield check
 = 1822.5
[kips]

Axial strength required
Pr
 = from gusset interface forces calc
 = -78.2
[kips]

 
Shear strength available
Vc
 = from shear yielding check
 = 1215.0
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 713.3
[kips]

 
Flexural yield interaction
ratio
 = (
Vr/Vc
)2 + (
Pr/Pc
+
Mr/Mc
)2
 = 0.48
AISC 15th  Eq 10-5
 < 1.0
OK
 
Gusset Plate - Flexural Rupture Interact (Sect a-a)
ratio =
0.48
PASS
Gusset plate
width bp
 = 54.000
[in]
thick tp
 = 0.750
[in]

tensile Fu
 = 65.0
[ksi]

Net area of plate
An
 = bp x tp
 = 40.500
[in2]

Plastic modulus of net section
Znet
 = ( bp x t2p ) / 4
 = 546.75
[in3]

Flexural strength available
Mc
 = φ Fu Znet     φ=0.75
 = 2221.17
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 656.86
[kip-ft]

 
Axial strength available
Pc
 = from axial tensile rupture check
 = 1974.4
[kips]

Axial strength required
Pr
 = from gusset interface forces calc
 = -78.2
[kips]

 
Shear strength available
Vc
 = from shear rupture check
 = 1184.6
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 713.3
[kips]

 
Flexural rupture interaction
ratio
 = (
Vr/Vc
)2 + (
Pr/Pc
+
Mr/Mc
)2
 = 0.48
AISC 15th  Eq 10-5
 < 1.0
OK
 
 
Gusset Plate - Shear Yielding (Sect b-b)
ratio = 64.7 / 704.1
0.09
PASS
Plate Shear Yielding Check



Plate size
width bp
 = 31.294
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Agv
 = bp tp
 = 23.471
[in2]

Shear force required
Vu
 = 
 = 64.7
[kips]

Plate shear yielding strength
Rn
 = 0.6 Fy Agv
 = 704.1
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 704.1
[kips]

ratio
 = 0.09
 > Vu
OK
 
Gusset Plate - Shear Rupture (Sect b-b)
ratio = 64.7 / 686.5
0.09
PASS
Plate Shear Rupture Check



Plate size
width bp
 = 31.294
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in shear
Anv
 = bp tp
 = 23.471
[in2]

Shear force in demand
Vu
 = 
 = 64.7
[kips]

Plate shear rupture strength
Rn
 = 0.6 Fu Anv
 = 915.3
[kips]
AISC 15th  Eq J4-4
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-4
φ Rn
 = 
 = 686.5
[kips]

ratio
 = 0.09
 > Vu
OK
 
 
Gusset Plate - Axial Tensile Yield (Sect b-b)
ratio = 105.1 / 1056.2
0.10
PASS
Gusset Edge Equivalent Normal Force


Refer to AISC DG29  Fig. B-1 for formula below to calculate gusset edge equivalent normal force
 
Gusset edge axial force
N
 = 
 = -39.1
[kips]

Gusset edge moment force
M
 = 
 = 43.00
[kip-ft]

Gusset edge interface length
L
 = 
 = 31.294
[in]

Gusset edge equivalent normal force
Ne
 = N -
4 M/L
 = -105.1
[kips]
AISC DG29  Fig B-1


Plate Tensile Yielding Check



Plate size
width bp
 = 31.294
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Ag
 = bp tp
 = 23.471
[in2]

Tensile force required
Pu
 = 
 = 105.1
[kips]

Plate tensile yielding strength
Rn
 = Fy Ag
 = 1173.5
[kips]
AISC 15th  Eq J4-1
Resistance factor-LRFD
φ
 = 0.90
AISC 15th  Eq J4-1
φ Rn
 = 
 = 1056.2
[kips]

ratio
 = 0.10
 > Pu
OK
 
Gusset Plate - Axial Tensile Rupture (Sect b-b)
ratio = 105.1 / 1144.2
0.09
PASS
Gusset Edge Equivalent Normal Force


Refer to AISC DG29  Fig. B-1 for formula below to calculate gusset edge equivalent normal force
 
Gusset edge axial force
N
 = 
 = -39.1
[kips]

Gusset edge moment force
M
 = 
 = 43.00
[kip-ft]

Gusset edge interface length
L
 = 
 = 31.294
[in]

Gusset edge equivalent normal force
Ne
 = N -
4 M/L
 = -105.1
[kips]
AISC DG29  Fig B-1


Plate Tensile Rupture Check



Plate size
width bp
 = 31.294
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in tension
Ant
 = bp tp
 = 23.471
[in2]

Tensile force required
Pu
 = 
 = 105.1
[kips]

Plate tensile rupture strength
Rn
 = Fu Ant
 = 1525.6
[kips]
AISC 15th  Eq J4-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-2
φ Rn
 = 
 = 1144.2
[kips]
AISC 15th  Eq J4-2
ratio
 = 0.09
 > Pu
OK
 
 
Gusset Plate - Flexural Yield Interact (Sect b-b)
ratio =
0.02
PASS
Gusset plate
width bp
 = 31.294
[in]
thick tp
 = 0.750
[in]

yield Fy
 = 50.0
[ksi]

Shear plate - gross area
Ag
 = bp x tp
 = 23.471
[in2]

Shear plate - plastic modulus
Zp
 = ( bp x t2p ) / 4
 = 183.62
[in3]

Flexural strength available
Mc
 = φ Fy Zp     φ=0.90
 = 688.58
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 43.00
[kip-ft]

 
Axial strength available
Pc
 = from axial tensile yield check
 = 1056.2
[kips]

Axial strength required
Pr
 = from gusset interface forces calc
 = -39.1
[kips]

 
Shear strength available
Vc
 = from shear yielding check
 = 704.1
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 64.7
[kips]

 
Flexural yield interaction
ratio
 = (
Vr/Vc
)2 + (
Pr/Pc
+
Mr/Mc
)2
 = 0.02
AISC 15th  Eq 10-5
 < 1.0
OK
 
Gusset Plate - Flexural Rupture Interact (Sect b-b)
ratio =
0.02
PASS
Gusset plate
width bp
 = 31.294
[in]
thick tp
 = 0.750
[in]

tensile Fu
 = 65.0
[ksi]

Net area of plate
An
 = bp x tp
 = 23.471
[in2]

Plastic modulus of net section
Znet
 = ( bp x t2p ) / 4
 = 183.62
[in3]

Flexural strength available
Mc
 = φ Fu Znet     φ=0.75
 = 745.96
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 43.00
[kip-ft]

 
Axial strength available
Pc
 = from axial tensile rupture check
 = 1144.2
[kips]

Axial strength required
Pr
 = from gusset interface forces calc
 = -39.1
[kips]

 
Shear strength available
Vc
 = from shear rupture check
 = 686.5
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 64.7
[kips]

 
Flexural rupture interaction
ratio
 = (
Vr/Vc
)2 + (
Pr/Pc
+
Mr/Mc
)2
 = 0.02
AISC 15th  Eq 10-5
 < 1.0
OK
 
 
Gusset to Beam Weld Strength
ratio = 22.06 / 17.55
1.26
FAIL
Gusset to Beam Interface - Forces
shear V
 = 713.3
[kips]
axial N
 = -78.2
[kips]   in tension
moment M
 = 656.86
[kip-ft]

Gusset to Beam Interface - Weld Length
Gusset-beam fillet weld length
Lw
 = 
 = 54.000
[in]

Gusset to Beam Interface - Combined Weld Stress
Weld stress from axial force
fa
 = N / Lw
 = -1.448
[kip/in]
in tension
Weld stress from shear force
fv
 = V / Lw
 = 13.209
[kip/in]

Weld stress from moment force
fb
 = 
M/L2 / 6
 = 16.219
[kip/in]

Weld stress combined - max
fmax
 = [ (fa - fb )2 + f2v ]0.5
 = 22.059
[kip/in]
AISC 15th  Eq 8-11
Weld resultant load angle
θ
 = tan-1 [( fb - fa ) / fv ]
 = 53.2
[°]

Fillet Weld Strength Calc
Fillet weld leg size
w
 = 716
[in]
load angle θ
 = 53.2
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 2   for double fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.36
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 35.293
[kip/in]
AISC 15th  Eq 8-1


Base metal - gusset plate
thickness t
 = 0.750
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - gusset plate is in shear, shear rupture as per AISC 15th  Eq J4-4 is checked
AISC 15th  J2.4
Base metal shear rupture
Rn-b
 = 0.6 Fu t
 = 29.250
[kip/in]
AISC 15th  Eq J4-4


Double fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 29.250
[kip/in]
AISC 15th  Eq 9-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 21.938
[kip/in]

 
When gusset plate is directly welded to beam or column, apply 1.25 ductility factor
to allow adequate force redistribution in the weld group
AISC 15th  Page 13-11
 
Weld strength used for design after applying ductility factor
φ Rn
 = φ Rn x ( 1/1.25 )
 = 17.550
[kip/in]

ratio
 = 1.26
 < fmax
NG


The fail is caused by base metal rupture not by weld metal rupture as such increasing weld size won't help.
The user has the following options to get this check passed
    1) Increase the base metal thickness or strength
    2) Increase the weld length
    3) Reduce the force in demand

 
 
Column Web Local Yielding
ratio = 662.1 / 2241.0
0.30
PASS
Gusset Edge Equivalent Normal Force


Refer to AISC DG29  Fig. B-1 for formula below to calculate gusset edge equivalent normal force
 
Gusset edge axial force
N
 = 
 = -78.2
[kips]

Gusset edge moment force
M
 = 
 = 656.86
[kip-ft]

Gusset edge interface length
L
 = 
 = 54.000
[in]

Gusset edge equivalent normal force
Ne
 = N -
4 M/L
 = -662.1
[kips]
AISC DG29  Fig B-1


 
Concentrated force from gusset
Pu
 = 
 = 662.1
[kips]

Beam section
d
 = 22.100
[in]
tf
 = 1.150
[in]

tw
 = 0.720
[in]
k
 = 1.650
[in]

yield Fy
 = 50.0
[ksi]



Length of bearing
lb
 = gusset-beam weld length
 = 54.000
[in]

 
Beam web local yielding strength
Rn
 = Fy tw ( 5 k + lb )
 = 2241.0
[kips]
AISC 15th  Eq J10-2
Resistance factor-LRFD
φ
 = 1.00
φ Rn
 = 
 = 2241.0
[kips]

ratio
 = 0.30
 > Pu
OK
 
Column Web Local Crippling
ratio = 662.1 / 2192.3
0.30
PASS
Gusset Edge Equivalent Normal Force


Refer to AISC DG29  Fig. B-1 for formula below to calculate gusset edge equivalent normal force
 
Gusset edge axial force
N
 = 
 = -78.2
[kips]

Gusset edge moment force
M
 = 
 = 656.86
[kip-ft]

Gusset edge interface length
L
 = 
 = 54.000
[in]

Gusset edge equivalent normal force
Ne
 = N -
4 M/L
 = -662.1
[kips]
AISC DG29  Fig B-1


 
Concentrated force from gusset
Pu
 = 
 = 662.1
[kips]

Beam section
d
 = 22.100
[in]
tf
 = 1.150
[in]

tw
 = 0.720
[in]
k
 = 1.650
[in]

yield Fy
 = 50.0
[ksi]
E
 = 29000
[ksi]



Length of bearing
lb
 = gusset-beam weld length
 = 54.000
[in]

Beam web local crippling strength
Rn
 = 0.8 t2w [1+3
lb/d
(
tw/tf
)1.5 ] x
 = 2923.0
[kips]
AISC 15th  Eq J10-4
(
E Fy tf/tw
)0.5

Resistance factor-LRFD
φ
 = 0.75
AISC 15th  J10.3
φRn
 = 
 = 2192.3
[kips]

ratio
 = 0.30
 > Pu
OK
 
Beam Web Longitudinal Shear Yielding
ratio = 713.3 / 2638.4
0.27
PASS
Beam Web Effective Length for Transmitting Shear


Refer to AISC Design Example v14.2 Page IIC-70 for formula below to calculate beam web effective length
in transmitting shear along Sect a-a
 
Beam sect W21X147
d
 = 22.100
[in]
bf
 = 12.500
[in]

tf
 = 1.150
[in]
tw
 = 0.720
[in]

k
 = 1.650
[in]
Fy
 = 50.0
[ksi]

 
Gusset edge interface length
L
 = 
 = 54.000
[in]

φt
 = 0.90
φv
 = 1.00

Beam web effective length for transmitting shear
Leff
 = L + 5k +
2 φt bf tf/φv 0.6 tw
 = 122.146
[in]



Gusset edge shear (Sect a-a)
Vu
 = 
 = 713.3
[kips]

Beam web shear strength
Rn
 = 0.6 Fy tw Leff
 = 2638.4
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 2638.4
[kips]

ratio
 = 0.27
 > Vu
OK
 
Beam Web Transverse Section Shear Yielding
ratio = 285.1 / 477.4
0.60
PASS
 
Beam sect W21X147
d
 = 22.100
[in]
tw
 = 0.720
[in]



Right brace axial force
P1
 = from user input
 = -559.7
[kips]
in tension
Right brace to hor line angle
θ1
 = from user input
 = 45.0
[°]

Right brace force ver component
V1
 = P1 sin θ1
 = -395.8
[kips]

Gusset edge shear (Sect b-b)
V'
 = 
 = 64.7
[kips]

 
Transfer force from chev brace on the other side of beam or column
Ab
 = from user input
 = -46.0
[kips]
in compression
 
Beam web transverse shear
Vu
 = V1 + V' - Ab
 = 285.1
[kips]



Beam web shear strength
Rn
 = 0.6 Fy d tw Cv
 = 477.4
[kips]
AISC 15th  Eq G2-1
Cv
 = 1.00
AISC 15th  Eq G2-2
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq G2-1
φ Rn
 = 
 = 477.4
[kips]

ratio
 = 0.60
 > Vu
OK
 
 
 
 
Brace Force LC2
PR= 449.1 kips (C)
PL= -559.7 kips (T)
ratio = 1.26
FAIL

Gusset Plate - Shear Yielding (Sect a-a)
ratio = 713.3 / 1215.0
0.59
PASS
Plate Shear Yielding Check



Plate size
width bp
 = 54.000
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Agv
 = bp tp
 = 40.500
[in2]

Shear force required
Vu
 = 
 = 713.3
[kips]

Plate shear yielding strength
Rn
 = 0.6 Fy Agv
 = 1215.0
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 1215.0
[kips]

ratio
 = 0.59
 > Vu
OK
 
Gusset Plate - Shear Rupture (Sect a-a)
ratio = 713.3 / 1184.6
0.60
PASS
Plate Shear Rupture Check



Plate size
width bp
 = 54.000
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in shear
Anv
 = bp tp
 = 40.500
[in2]

Shear force in demand
Vu
 = 
 = 713.3
[kips]

Plate shear rupture strength
Rn
 = 0.6 Fu Anv
 = 1579.5
[kips]
AISC 15th  Eq J4-4
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-4
φ Rn
 = 
 = 1184.6
[kips]

ratio
 = 0.60
 > Vu
OK
 
 
Gusset Plate - Axial Tensile Yield (Sect a-a)
ratio = 662.1 / 1822.5
0.36
PASS
Gusset Edge Equivalent Normal Force


Refer to AISC DG29  Fig. B-1 for formula below to calculate gusset edge equivalent normal force
 
Gusset edge axial force
N
 = 
 = -78.2
[kips]

Gusset edge moment force
M
 = 
 = 656.86
[kip-ft]

Gusset edge interface length
L
 = 
 = 54.000
[in]

Gusset edge equivalent normal force
Ne
 = N -
4 M/L
 = -662.1
[kips]
AISC DG29  Fig B-1


Plate Tensile Yielding Check



Plate size
width bp
 = 54.000
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Ag
 = bp tp
 = 40.500
[in2]

Tensile force required
Pu
 = 
 = 662.1
[kips]

Plate tensile yielding strength
Rn
 = Fy Ag
 = 2025.0
[kips]
AISC 15th  Eq J4-1
Resistance factor-LRFD
φ
 = 0.90
AISC 15th  Eq J4-1
φ Rn
 = 
 = 1822.5
[kips]

ratio
 = 0.36
 > Pu
OK
 
Gusset Plate - Axial Tensile Rupture (Sect a-a)
ratio = 662.1 / 1974.4
0.34
PASS
Gusset Edge Equivalent Normal Force


Refer to AISC DG29  Fig. B-1 for formula below to calculate gusset edge equivalent normal force
 
Gusset edge axial force
N
 = 
 = -78.2
[kips]

Gusset edge moment force
M
 = 
 = 656.86
[kip-ft]

Gusset edge interface length
L
 = 
 = 54.000
[in]

Gusset edge equivalent normal force
Ne
 = N -
4 M/L
 = -662.1
[kips]
AISC DG29  Fig B-1


Plate Tensile Rupture Check



Plate size
width bp
 = 54.000
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in tension
Ant
 = bp tp
 = 40.500
[in2]

Tensile force required
Pu
 = 
 = 662.1
[kips]

Plate tensile rupture strength
Rn
 = Fu Ant
 = 2632.5
[kips]
AISC 15th  Eq J4-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-2
φ Rn
 = 
 = 1974.4
[kips]
AISC 15th  Eq J4-2
ratio
 = 0.34
 > Pu
OK
 
 
Gusset Plate - Flexural Yield Interact (Sect a-a)
ratio =
0.48
PASS
Gusset plate
width bp
 = 54.000
[in]
thick tp
 = 0.750
[in]

yield Fy
 = 50.0
[ksi]

Shear plate - gross area
Ag
 = bp x tp
 = 40.500
[in2]

Shear plate - plastic modulus
Zp
 = ( bp x t2p ) / 4
 = 546.75
[in3]

Flexural strength available
Mc
 = φ Fy Zp     φ=0.90
 = 2050.31
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 656.86
[kip-ft]

 
Axial strength available
Pc
 = from axial tensile yield check
 = 1822.5
[kips]

Axial strength required
Pr
 = from gusset interface forces calc
 = -78.2
[kips]

 
Shear strength available
Vc
 = from shear yielding check
 = 1215.0
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 713.3
[kips]

 
Flexural yield interaction
ratio
 = (
Vr/Vc
)2 + (
Pr/Pc
+
Mr/Mc
)2
 = 0.48
AISC 15th  Eq 10-5
 < 1.0
OK
 
Gusset Plate - Flexural Rupture Interact (Sect a-a)
ratio =
0.48
PASS
Gusset plate
width bp
 = 54.000
[in]
thick tp
 = 0.750
[in]

tensile Fu
 = 65.0
[ksi]

Net area of plate
An
 = bp x tp
 = 40.500
[in2]

Plastic modulus of net section
Znet
 = ( bp x t2p ) / 4
 = 546.75
[in3]

Flexural strength available
Mc
 = φ Fu Znet     φ=0.75
 = 2221.17
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 656.86
[kip-ft]

 
Axial strength available
Pc
 = from axial tensile rupture check
 = 1974.4
[kips]

Axial strength required
Pr
 = from gusset interface forces calc
 = -78.2
[kips]

 
Shear strength available
Vc
 = from shear rupture check
 = 1184.6
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 713.3
[kips]

 
Flexural rupture interaction
ratio
 = (
Vr/Vc
)2 + (
Pr/Pc
+
Mr/Mc
)2
 = 0.48
AISC 15th  Eq 10-5
 < 1.0
OK
 
 
Gusset Plate - Shear Yielding (Sect b-b)
ratio = 64.7 / 704.1
0.09
PASS
Plate Shear Yielding Check



Plate size
width bp
 = 31.294
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Agv
 = bp tp
 = 23.471
[in2]

Shear force required
Vu
 = 
 = 64.7
[kips]

Plate shear yielding strength
Rn
 = 0.6 Fy Agv
 = 704.1
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 704.1
[kips]

ratio
 = 0.09
 > Vu
OK
 
Gusset Plate - Shear Rupture (Sect b-b)
ratio = 64.7 / 686.5
0.09
PASS
Plate Shear Rupture Check



Plate size
width bp
 = 31.294
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in shear
Anv
 = bp tp
 = 23.471
[in2]

Shear force in demand
Vu
 = 
 = 64.7
[kips]

Plate shear rupture strength
Rn
 = 0.6 Fu Anv
 = 915.3
[kips]
AISC 15th  Eq J4-4
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-4
φ Rn
 = 
 = 686.5
[kips]

ratio
 = 0.09
 > Vu
OK
 
 
Gusset Plate - Axial Tensile Yield (Sect b-b)
ratio = 105.1 / 1056.2
0.10
PASS
Gusset Edge Equivalent Normal Force


Refer to AISC DG29  Fig. B-1 for formula below to calculate gusset edge equivalent normal force
 
Gusset edge axial force
N
 = 
 = -39.1
[kips]

Gusset edge moment force
M
 = 
 = 43.00
[kip-ft]

Gusset edge interface length
L
 = 
 = 31.294
[in]

Gusset edge equivalent normal force
Ne
 = N -
4 M/L
 = -105.1
[kips]
AISC DG29  Fig B-1


Plate Tensile Yielding Check



Plate size
width bp
 = 31.294
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Ag
 = bp tp
 = 23.471
[in2]

Tensile force required
Pu
 = 
 = 105.1
[kips]

Plate tensile yielding strength
Rn
 = Fy Ag
 = 1173.5
[kips]
AISC 15th  Eq J4-1
Resistance factor-LRFD
φ
 = 0.90
AISC 15th  Eq J4-1
φ Rn
 = 
 = 1056.2
[kips]

ratio
 = 0.10
 > Pu
OK
 
Gusset Plate - Axial Tensile Rupture (Sect b-b)
ratio = 105.1 / 1144.2
0.09
PASS
Gusset Edge Equivalent Normal Force


Refer to AISC DG29  Fig. B-1 for formula below to calculate gusset edge equivalent normal force
 
Gusset edge axial force
N
 = 
 = -39.1
[kips]

Gusset edge moment force
M
 = 
 = 43.00
[kip-ft]

Gusset edge interface length
L
 = 
 = 31.294
[in]

Gusset edge equivalent normal force
Ne
 = N -
4 M/L
 = -105.1
[kips]
AISC DG29  Fig B-1


Plate Tensile Rupture Check



Plate size
width bp
 = 31.294
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in tension
Ant
 = bp tp
 = 23.471
[in2]

Tensile force required
Pu
 = 
 = 105.1
[kips]

Plate tensile rupture strength
Rn
 = Fu Ant
 = 1525.6
[kips]
AISC 15th  Eq J4-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-2
φ Rn
 = 
 = 1144.2
[kips]
AISC 15th  Eq J4-2
ratio
 = 0.09
 > Pu
OK
 
 
Gusset Plate - Flexural Yield Interact (Sect b-b)
ratio =
0.02
PASS
Gusset plate
width bp
 = 31.294
[in]
thick tp
 = 0.750
[in]

yield Fy
 = 50.0
[ksi]

Shear plate - gross area
Ag
 = bp x tp
 = 23.471
[in2]

Shear plate - plastic modulus
Zp
 = ( bp x t2p ) / 4
 = 183.62
[in3]

Flexural strength available
Mc
 = φ Fy Zp     φ=0.90
 = 688.58
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 43.00
[kip-ft]

 
Axial strength available
Pc
 = from axial tensile yield check
 = 1056.2
[kips]

Axial strength required
Pr
 = from gusset interface forces calc
 = -39.1
[kips]

 
Shear strength available
Vc
 = from shear yielding check
 = 704.1
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 64.7
[kips]

 
Flexural yield interaction
ratio
 = (
Vr/Vc
)2 + (
Pr/Pc
+
Mr/Mc
)2
 = 0.02
AISC 15th  Eq 10-5
 < 1.0
OK
 
Gusset Plate - Flexural Rupture Interact (Sect b-b)
ratio =
0.02
PASS
Gusset plate
width bp
 = 31.294
[in]
thick tp
 = 0.750
[in]

tensile Fu
 = 65.0
[ksi]

Net area of plate
An
 = bp x tp
 = 23.471
[in2]

Plastic modulus of net section
Znet
 = ( bp x t2p ) / 4
 = 183.62
[in3]

Flexural strength available
Mc
 = φ Fu Znet     φ=0.75
 = 745.96
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 43.00
[kip-ft]

 
Axial strength available
Pc
 = from axial tensile rupture check
 = 1144.2
[kips]

Axial strength required
Pr
 = from gusset interface forces calc
 = -39.1
[kips]

 
Shear strength available
Vc
 = from shear rupture check
 = 686.5
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 64.7
[kips]

 
Flexural rupture interaction
ratio
 = (
Vr/Vc
)2 + (
Pr/Pc
+
Mr/Mc
)2
 = 0.02
AISC 15th  Eq 10-5
 < 1.0
OK
 
 
Gusset to Beam Weld Strength
ratio = 22.06 / 17.55
1.26
FAIL
Gusset to Beam Interface - Forces
shear V
 = 713.3
[kips]
axial N
 = -78.2
[kips]   in tension
moment M
 = 656.86
[kip-ft]

Gusset to Beam Interface - Weld Length
Gusset-beam fillet weld length
Lw
 = 
 = 54.000
[in]

Gusset to Beam Interface - Combined Weld Stress
Weld stress from axial force
fa
 = N / Lw
 = -1.448
[kip/in]
in tension
Weld stress from shear force
fv
 = V / Lw
 = 13.209
[kip/in]

Weld stress from moment force
fb
 = 
M/L2 / 6
 = 16.219
[kip/in]

Weld stress combined - max
fmax
 = [ (fa - fb )2 + f2v ]0.5
 = 22.059
[kip/in]
AISC 15th  Eq 8-11
Weld resultant load angle
θ
 = tan-1 [( fb - fa ) / fv ]
 = 53.2
[°]

Fillet Weld Strength Calc
Fillet weld leg size
w
 = 716
[in]
load angle θ
 = 53.2
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 2   for double fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.36
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 35.293
[kip/in]
AISC 15th  Eq 8-1


Base metal - gusset plate
thickness t
 = 0.750
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - gusset plate is in shear, shear rupture as per AISC 15th  Eq J4-4 is checked
AISC 15th  J2.4
Base metal shear rupture
Rn-b
 = 0.6 Fu t
 = 29.250
[kip/in]
AISC 15th  Eq J4-4


Double fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 29.250
[kip/in]
AISC 15th  Eq 9-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 21.938
[kip/in]

 
When gusset plate is directly welded to beam or column, apply 1.25 ductility factor
to allow adequate force redistribution in the weld group
AISC 15th  Page 13-11
 
Weld strength used for design after applying ductility factor
φ Rn
 = φ Rn x ( 1/1.25 )
 = 17.550
[kip/in]

ratio
 = 1.26
 < fmax
NG


The fail is caused by base metal rupture not by weld metal rupture as such increasing weld size won't help.
The user has the following options to get this check passed
    1) Increase the base metal thickness or strength
    2) Increase the weld length
    3) Reduce the force in demand

 
 
Column Web Local Yielding
ratio = 662.1 / 2241.0
0.30
PASS
Gusset Edge Equivalent Normal Force


Refer to AISC DG29  Fig. B-1 for formula below to calculate gusset edge equivalent normal force
 
Gusset edge axial force
N
 = 
 = -78.2
[kips]

Gusset edge moment force
M
 = 
 = 656.86
[kip-ft]

Gusset edge interface length
L
 = 
 = 54.000
[in]

Gusset edge equivalent normal force
Ne
 = N -
4 M/L
 = -662.1
[kips]
AISC DG29  Fig B-1


 
Concentrated force from gusset
Pu
 = 
 = 662.1
[kips]

Beam section
d
 = 22.100
[in]
tf
 = 1.150
[in]

tw
 = 0.720
[in]
k
 = 1.650
[in]

yield Fy
 = 50.0
[ksi]



Length of bearing
lb
 = gusset-beam weld length
 = 54.000
[in]

 
Beam web local yielding strength
Rn
 = Fy tw ( 5 k + lb )
 = 2241.0
[kips]
AISC 15th  Eq J10-2
Resistance factor-LRFD
φ
 = 1.00
φ Rn
 = 
 = 2241.0
[kips]

ratio
 = 0.30
 > Pu
OK
 
Column Web Local Crippling
ratio = 662.1 / 2192.3
0.30
PASS
Gusset Edge Equivalent Normal Force


Refer to AISC DG29  Fig. B-1 for formula below to calculate gusset edge equivalent normal force
 
Gusset edge axial force
N
 = 
 = -78.2
[kips]

Gusset edge moment force
M
 = 
 = 656.86
[kip-ft]

Gusset edge interface length
L
 = 
 = 54.000
[in]

Gusset edge equivalent normal force
Ne
 = N -
4 M/L
 = -662.1
[kips]
AISC DG29  Fig B-1


 
Concentrated force from gusset
Pu
 = 
 = 662.1
[kips]

Beam section
d
 = 22.100
[in]
tf
 = 1.150
[in]

tw
 = 0.720
[in]
k
 = 1.650
[in]

yield Fy
 = 50.0
[ksi]
E
 = 29000
[ksi]



Length of bearing
lb
 = gusset-beam weld length
 = 54.000
[in]

Beam web local crippling strength
Rn
 = 0.8 t2w [1+3
lb/d
(
tw/tf
)1.5 ] x
 = 2923.0
[kips]
AISC 15th  Eq J10-4
(
E Fy tf/tw
)0.5

Resistance factor-LRFD
φ
 = 0.75
AISC 15th  J10.3
φRn
 = 
 = 2192.3
[kips]

ratio
 = 0.30
 > Pu
OK
 
Beam Web Longitudinal Shear Yielding
ratio = 713.3 / 2638.4
0.27
PASS
Beam Web Effective Length for Transmitting Shear


Refer to AISC Design Example v14.2 Page IIC-70 for formula below to calculate beam web effective length
in transmitting shear along Sect a-a
 
Beam sect W21X147
d
 = 22.100
[in]
bf
 = 12.500
[in]

tf
 = 1.150
[in]
tw
 = 0.720
[in]

k
 = 1.650
[in]
Fy
 = 50.0
[ksi]

 
Gusset edge interface length
L
 = 
 = 54.000
[in]

φt
 = 0.90
φv
 = 1.00

Beam web effective length for transmitting shear
Leff
 = L + 5k +
2 φt bf tf/φv 0.6 tw
 = 122.146
[in]



Gusset edge shear (Sect a-a)
Vu
 = 
 = 713.3
[kips]

Beam web shear strength
Rn
 = 0.6 Fy tw Leff
 = 2638.4
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 2638.4
[kips]

ratio
 = 0.27
 > Vu
OK
 
Beam Web Transverse Section Shear Yielding
ratio = 280.5 / 477.4
0.59
PASS
 
Beam sect W21X147
d
 = 22.100
[in]
tw
 = 0.720
[in]



Right brace axial force
P1
 = from user input
 = 449.1
[kips]
in compression
Right brace to hor line angle
θ1
 = from user input
 = 45.0
[°]

Right brace force ver component
V1
 = P1 sin θ1
 = 317.6
[kips]

Gusset edge shear (Sect b-b)
V'
 = 
 = -64.7
[kips]

 
Transfer force from chev brace on the other side of beam or column
Ab
 = from user input
 = -27.6
[kips]
 
Beam web transverse shear
Vu
 = V1 + V' - Ab
 = 280.5
[kips]



Beam web shear strength
Rn
 = 0.6 Fy d tw Cv
 = 477.4
[kips]
AISC 15th  Eq G2-1
Cv
 = 1.00
AISC 15th  Eq G2-2
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq G2-1
φ Rn
 = 
 = 477.4
[kips]

ratio
 = 0.59
 > Vu
OK
 
 
 

 
Seismic - SCBF  LC3 & LC4  Gusset Interface Forces Calc
 


Brace Axial Force LC3


Refer to AISC DG29  Fig. 4-5 ~ Fig. 4-7 for all charts and definitions of variables and symbols shown in calculation below
 
Right brace axial force
P1
 = from seismic brace force calc
 = -559.7
[kips]
in tension
Right brace to hor line angle
θ1
 = from user input
 = 45.0
[°]

H1
 = -395.8
[kips]
V1
 = -395.8
[kips]



Left brace axial force
P2
 = from seismic brace force calc
 = 134.7
[kips]
in compression
Left brace to hor line angle
θ2
 = from user input
 = 45.0
[°]

H2
 = 95.2
[kips]
V2
 = 95.2
[kips]



L1
 = 27.000
[in]
L2
 = 27.000
[in]

L
 = L1 + L2
 = 54.000
[in]

Δ
 = ( L2 - L1 ) /2
 = 0.000
[in]

e
 = 11.050
[in]
h
 = 31.294
[in]

 
M1
 = -364.44
[kip-ft]
M2
 = -87.71
[kip-ft]

 
Forces on Section a-a
AISC DG29  Fig. 4-6
Shear
V
 = H1 - H2
 = -491.0
[kips]

Axial
N
 = V1 + V2
 = -300.5
[kips]
in tension
Moment
M
 = M1 + M2
 = -452.14
[kip-ft]

Forces on Section b-b
AISC DG29  Fig. 4-7
Shear
V'
 = 
1/2
( V1 + V2 ) +
M/0.5XL
- V1
 = 44.6
[kips]

Axial
N'
 = 
1/2
( H1 - H2 ) x -1 + H1
 = -150.3
[kips]
in tension
Moment
M'
 = 
L/8
(V1+V2 ) +
h/4
(H1-H2 ) +
M/2
 = 165.25
[kip-ft]

- V1 Δ - H1 (e +
h/2
)

 


Brace Axial Force LC4


Refer to AISC DG29  Fig. 4-5 ~ Fig. 4-7 for all charts and definitions of variables and symbols shown in calculation below
 
Right brace axial force
P1
 = from seismic brace force calc
 = 134.7
[kips]
in compression
Right brace to hor line angle
θ1
 = from user input
 = 45.0
[°]

H1
 = 95.2
[kips]
V1
 = 95.2
[kips]



Left brace axial force
P2
 = from seismic brace force calc
 = -559.7
[kips]
in tension
Left brace to hor line angle
θ2
 = from user input
 = 45.0
[°]

H2
 = -395.8
[kips]
V2
 = -395.8
[kips]



L1
 = 27.000
[in]
L2
 = 27.000
[in]

L
 = L1 + L2
 = 54.000
[in]

Δ
 = ( L2 - L1 ) /2
 = 0.000
[in]

e
 = 11.050
[in]
h
 = 31.294
[in]

 
M1
 = 87.71
[kip-ft]
M2
 = 364.44
[kip-ft]

 
Forces on Section a-a
AISC DG29  Fig. 4-6
Shear
V
 = H1 - H2
 = 491.0
[kips]

Axial
N
 = V1 + V2
 = -300.5
[kips]
in tension
Moment
M
 = M1 + M2
 = 452.14
[kip-ft]

Forces on Section b-b
AISC DG29  Fig. 4-7
Shear
V'
 = 
1/2
( V1 + V2 ) +
M/0.5XL
- V1
 = -44.6
[kips]

Axial
N'
 = 
1/2
( H1 - H2 ) x -1 + H1
 = -150.3
[kips]
in tension
Moment
M'
 = 
L/8
(V1+V2 ) +
h/4
(H1-H2 ) +
M/2
 = 165.25
[kip-ft]

- V1 Δ - H1 (e +
h/2
)

 
 

Gusset to Beam
Direct Weld Connection
Code=AISC 360-16 LRFD

Result Summary
geometries & weld limitations = PASS
limit states max ratio 
1.08
FAIL
 
 
Weld Limitation Checks - Gusset to Beam
PASS
Min Fillet Weld Size


Thinner part joined thickness
t
 = 
 = 0.750
[in]

Min fillet weld size allowed
wmin
 = 
 = 0.250
[in]
AISC 15th  Table J2.4
Fillet weld size provided
w
 = 
 = 0.438
[in]

 ≥ wmin
OK
Min Fillet Weld Length


Fillet weld size provided
w
 = 
 = 0.438
[in]

Min fillet weld length allowed
Lmin
 = 4 x w
 = 1.750
[in]
AISC 15th  J2.2b
Min fillet weld length
L
 = 
 = 84.686
[in]

 ≥ Lmin
OK
 
 
 
 
Brace Force LC3
PR= -559.7 kips (T)
PL= 134.7 kips (C)
ratio = 1.08
FAIL

Gusset Plate - Shear Yielding (Sect a-a)
ratio = 491.0 / 1215.0
0.40
PASS
Plate Shear Yielding Check



Plate size
width bp
 = 54.000
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Agv
 = bp tp
 = 40.500
[in2]

Shear force required
Vu
 = 
 = 491.0
[kips]

Plate shear yielding strength
Rn
 = 0.6 Fy Agv
 = 1215.0
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 1215.0
[kips]

ratio
 = 0.40
 > Vu
OK
 
Gusset Plate - Shear Rupture (Sect a-a)
ratio = 491.0 / 1184.6
0.41
PASS
Plate Shear Rupture Check



Plate size
width bp
 = 54.000
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in shear
Anv
 = bp tp
 = 40.500
[in2]

Shear force in demand
Vu
 = 
 = 491.0
[kips]

Plate shear rupture strength
Rn
 = 0.6 Fu Anv
 = 1579.5
[kips]
AISC 15th  Eq J4-4
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-4
φ Rn
 = 
 = 1184.6
[kips]

ratio
 = 0.41
 > Vu
OK
 
 
Gusset Plate - Axial Tensile Yield (Sect a-a)
ratio = 702.4 / 1822.5
0.39
PASS
Gusset Edge Equivalent Normal Force


Refer to AISC DG29  Fig. B-1 for formula below to calculate gusset edge equivalent normal force
 
Gusset edge axial force
N
 = 
 = -300.5
[kips]

Gusset edge moment force
M
 = 
 = 452.14
[kip-ft]

Gusset edge interface length
L
 = 
 = 54.000
[in]

Gusset edge equivalent normal force
Ne
 = N -
4 M/L
 = -702.4
[kips]
AISC DG29  Fig B-1


Plate Tensile Yielding Check



Plate size
width bp
 = 54.000
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Ag
 = bp tp
 = 40.500
[in2]

Tensile force required
Pu
 = 
 = 702.4
[kips]

Plate tensile yielding strength
Rn
 = Fy Ag
 = 2025.0
[kips]
AISC 15th  Eq J4-1
Resistance factor-LRFD
φ
 = 0.90
AISC 15th  Eq J4-1
φ Rn
 = 
 = 1822.5
[kips]

ratio
 = 0.39
 > Pu
OK
 
Gusset Plate - Axial Tensile Rupture (Sect a-a)
ratio = 702.4 / 1974.4
0.36
PASS
Gusset Edge Equivalent Normal Force


Refer to AISC DG29  Fig. B-1 for formula below to calculate gusset edge equivalent normal force
 
Gusset edge axial force
N
 = 
 = -300.5
[kips]

Gusset edge moment force
M
 = 
 = 452.14
[kip-ft]

Gusset edge interface length
L
 = 
 = 54.000
[in]

Gusset edge equivalent normal force
Ne
 = N -
4 M/L
 = -702.4
[kips]
AISC DG29  Fig B-1


Plate Tensile Rupture Check



Plate size
width bp
 = 54.000
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in tension
Ant
 = bp tp
 = 40.500
[in2]

Tensile force required
Pu
 = 
 = 702.4
[kips]

Plate tensile rupture strength
Rn
 = Fu Ant
 = 2632.5
[kips]
AISC 15th  Eq J4-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-2
φ Rn
 = 
 = 1974.4
[kips]
AISC 15th  Eq J4-2
ratio
 = 0.36
 > Pu
OK
 
 
Gusset Plate - Flexural Yield Interact (Sect a-a)
ratio =
0.31
PASS
Gusset plate
width bp
 = 54.000
[in]
thick tp
 = 0.750
[in]

yield Fy
 = 50.0
[ksi]

Shear plate - gross area
Ag
 = bp x tp
 = 40.500
[in2]

Shear plate - plastic modulus
Zp
 = ( bp x t2p ) / 4
 = 546.75
[in3]

Flexural strength available
Mc
 = φ Fy Zp     φ=0.90
 = 2050.31
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 452.14
[kip-ft]

 
Axial strength available
Pc
 = from axial tensile yield check
 = 1822.5
[kips]

Axial strength required
Pr
 = from gusset interface forces calc
 = -300.5
[kips]

 
Shear strength available
Vc
 = from shear yielding check
 = 1215.0
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 491.0
[kips]

 
Flexural yield interaction
ratio
 = (
Vr/Vc
)2 + (
Pr/Pc
+
Mr/Mc
)2
 = 0.31
AISC 15th  Eq 10-5
 < 1.0
OK
 
Gusset Plate - Flexural Rupture Interact (Sect a-a)
ratio =
0.30
PASS
Gusset plate
width bp
 = 54.000
[in]
thick tp
 = 0.750
[in]

tensile Fu
 = 65.0
[ksi]

Net area of plate
An
 = bp x tp
 = 40.500
[in2]

Plastic modulus of net section
Znet
 = ( bp x t2p ) / 4
 = 546.75
[in3]

Flexural strength available
Mc
 = φ Fu Znet     φ=0.75
 = 2221.17
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 452.14
[kip-ft]

 
Axial strength available
Pc
 = from axial tensile rupture check
 = 1974.4
[kips]

Axial strength required
Pr
 = from gusset interface forces calc
 = -300.5
[kips]

 
Shear strength available
Vc
 = from shear rupture check
 = 1184.6
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 491.0
[kips]

 
Flexural rupture interaction
ratio
 = (
Vr/Vc
)2 + (
Pr/Pc
+
Mr/Mc
)2
 = 0.30
AISC 15th  Eq 10-5
 < 1.0
OK
 
 
Gusset Plate - Shear Yielding (Sect b-b)
ratio = 44.6 / 704.1
0.06
PASS
Plate Shear Yielding Check



Plate size
width bp
 = 31.294
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Agv
 = bp tp
 = 23.471
[in2]

Shear force required
Vu
 = 
 = 44.6
[kips]

Plate shear yielding strength
Rn
 = 0.6 Fy Agv
 = 704.1
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 704.1
[kips]

ratio
 = 0.06
 > Vu
OK
 
Gusset Plate - Shear Rupture (Sect b-b)
ratio = 44.6 / 686.5
0.06
PASS
Plate Shear Rupture Check



Plate size
width bp
 = 31.294
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in shear
Anv
 = bp tp
 = 23.471
[in2]

Shear force in demand
Vu
 = 
 = 44.6
[kips]

Plate shear rupture strength
Rn
 = 0.6 Fu Anv
 = 915.3
[kips]
AISC 15th  Eq J4-4
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-4
φ Rn
 = 
 = 686.5
[kips]

ratio
 = 0.06
 > Vu
OK
 
 
Gusset Plate - Axial Tensile Yield (Sect b-b)
ratio = 403.8 / 1056.2
0.38
PASS
Gusset Edge Equivalent Normal Force


Refer to AISC DG29  Fig. B-1 for formula below to calculate gusset edge equivalent normal force
 
Gusset edge axial force
N
 = 
 = -150.3
[kips]

Gusset edge moment force
M
 = 
 = 165.25
[kip-ft]

Gusset edge interface length
L
 = 
 = 31.294
[in]

Gusset edge equivalent normal force
Ne
 = N -
4 M/L
 = -403.8
[kips]
AISC DG29  Fig B-1


Plate Tensile Yielding Check



Plate size
width bp
 = 31.294
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Ag
 = bp tp
 = 23.471
[in2]

Tensile force required
Pu
 = 
 = 403.8
[kips]

Plate tensile yielding strength
Rn
 = Fy Ag
 = 1173.5
[kips]
AISC 15th  Eq J4-1
Resistance factor-LRFD
φ
 = 0.90
AISC 15th  Eq J4-1
φ Rn
 = 
 = 1056.2
[kips]

ratio
 = 0.38
 > Pu
OK
 
Gusset Plate - Axial Tensile Rupture (Sect b-b)
ratio = 403.8 / 1144.2
0.35
PASS
Gusset Edge Equivalent Normal Force


Refer to AISC DG29  Fig. B-1 for formula below to calculate gusset edge equivalent normal force
 
Gusset edge axial force
N
 = 
 = -150.3
[kips]

Gusset edge moment force
M
 = 
 = 165.25
[kip-ft]

Gusset edge interface length
L
 = 
 = 31.294
[in]

Gusset edge equivalent normal force
Ne
 = N -
4 M/L
 = -403.8
[kips]
AISC DG29  Fig B-1


Plate Tensile Rupture Check



Plate size
width bp
 = 31.294
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in tension
Ant
 = bp tp
 = 23.471
[in2]

Tensile force required
Pu
 = 
 = 403.8
[kips]

Plate tensile rupture strength
Rn
 = Fu Ant
 = 1525.6
[kips]
AISC 15th  Eq J4-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-2
φ Rn
 = 
 = 1144.2
[kips]
AISC 15th  Eq J4-2
ratio
 = 0.35
 > Pu
OK
 
 
Gusset Plate - Flexural Yield Interact (Sect b-b)
ratio =
0.15
PASS
Gusset plate
width bp
 = 31.294
[in]
thick tp
 = 0.750
[in]

yield Fy
 = 50.0
[ksi]

Shear plate - gross area
Ag
 = bp x tp
 = 23.471
[in2]

Shear plate - plastic modulus
Zp
 = ( bp x t2p ) / 4
 = 183.62
[in3]

Flexural strength available
Mc
 = φ Fy Zp     φ=0.90
 = 688.58
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 165.25
[kip-ft]

 
Axial strength available
Pc
 = from axial tensile yield check
 = 1056.2
[kips]

Axial strength required
Pr
 = from gusset interface forces calc
 = -150.3
[kips]

 
Shear strength available
Vc
 = from shear yielding check
 = 704.1
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 44.6
[kips]

 
Flexural yield interaction
ratio
 = (
Vr/Vc
)2 + (
Pr/Pc
+
Mr/Mc
)2
 = 0.15
AISC 15th  Eq 10-5
 < 1.0
OK
 
Gusset Plate - Flexural Rupture Interact (Sect b-b)
ratio =
0.13
PASS
Gusset plate
width bp
 = 31.294
[in]
thick tp
 = 0.750
[in]

tensile Fu
 = 65.0
[ksi]

Net area of plate
An
 = bp x tp
 = 23.471
[in2]

Plastic modulus of net section
Znet
 = ( bp x t2p ) / 4
 = 183.62
[in3]

Flexural strength available
Mc
 = φ Fu Znet     φ=0.75
 = 745.96
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 165.25
[kip-ft]

 
Axial strength available
Pc
 = from axial tensile rupture check
 = 1144.2
[kips]

Axial strength required
Pr
 = from gusset interface forces calc
 = -150.3
[kips]

 
Shear strength available
Vc
 = from shear rupture check
 = 686.5
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 44.6
[kips]

 
Flexural rupture interaction
ratio
 = (
Vr/Vc
)2 + (
Pr/Pc
+
Mr/Mc
)2
 = 0.13
AISC 15th  Eq 10-5
 < 1.0
OK
 
 
Gusset to Beam Weld Strength
ratio = 19.04 / 17.55
1.08
FAIL
Gusset to Beam Interface - Forces
shear V
 = 491.0
[kips]
axial N
 = -300.5
[kips]   in tension
moment M
 = 452.14
[kip-ft]

Gusset to Beam Interface - Weld Length
Gusset-beam fillet weld length
Lw
 = 
 = 54.000
[in]

Gusset to Beam Interface - Combined Weld Stress
Weld stress from axial force
fa
 = N / Lw
 = -5.565
[kip/in]
in tension
Weld stress from shear force
fv
 = V / Lw
 = 9.093
[kip/in]

Weld stress from moment force
fb
 = 
M/L2 / 6
 = 11.164
[kip/in]

Weld stress combined - max
fmax
 = [ (fa - fb )2 + f2v ]0.5
 = 19.040
[kip/in]
AISC 15th  Eq 8-11
Weld resultant load angle
θ
 = tan-1 [( fb - fa ) / fv ]
 = 61.5
[°]

Fillet Weld Strength Calc
Fillet weld leg size
w
 = 716
[in]
load angle θ
 = 61.5
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 2   for double fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.41
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 36.681
[kip/in]
AISC 15th  Eq 8-1


Base metal - gusset plate
thickness t
 = 0.750
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - gusset plate is in shear, shear rupture as per AISC 15th  Eq J4-4 is checked
AISC 15th  J2.4
Base metal shear rupture
Rn-b
 = 0.6 Fu t
 = 29.250
[kip/in]
AISC 15th  Eq J4-4


Double fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 29.250
[kip/in]
AISC 15th  Eq 9-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 21.938
[kip/in]

 
When gusset plate is directly welded to beam or column, apply 1.25 ductility factor
to allow adequate force redistribution in the weld group
AISC 15th  Page 13-11
 
Weld strength used for design after applying ductility factor
φ Rn
 = φ Rn x ( 1/1.25 )
 = 17.550
[kip/in]

ratio
 = 1.08
 < fmax
NG


The fail is caused by base metal rupture not by weld metal rupture as such increasing weld size won't help.
The user has the following options to get this check passed
    1) Increase the base metal thickness or strength
    2) Increase the weld length
    3) Reduce the force in demand

 
 
Column Web Local Yielding
ratio = 702.4 / 2241.0
0.31
PASS
Gusset Edge Equivalent Normal Force


Refer to AISC DG29  Fig. B-1 for formula below to calculate gusset edge equivalent normal force
 
Gusset edge axial force
N
 = 
 = -300.5
[kips]

Gusset edge moment force
M
 = 
 = 452.14
[kip-ft]

Gusset edge interface length
L
 = 
 = 54.000
[in]

Gusset edge equivalent normal force
Ne
 = N -
4 M/L
 = -702.4
[kips]
AISC DG29  Fig B-1


 
Concentrated force from gusset
Pu
 = 
 = 702.4
[kips]

Beam section
d
 = 22.100
[in]
tf
 = 1.150
[in]

tw
 = 0.720
[in]
k
 = 1.650
[in]

yield Fy
 = 50.0
[ksi]



Length of bearing
lb
 = gusset-beam weld length
 = 54.000
[in]

 
Beam web local yielding strength
Rn
 = Fy tw ( 5 k + lb )
 = 2241.0
[kips]
AISC 15th  Eq J10-2
Resistance factor-LRFD
φ
 = 1.00
φ Rn
 = 
 = 2241.0
[kips]

ratio
 = 0.31
 > Pu
OK
 
Column Web Local Crippling
ratio = 702.4 / 2192.3
0.32
PASS
Gusset Edge Equivalent Normal Force


Refer to AISC DG29  Fig. B-1 for formula below to calculate gusset edge equivalent normal force
 
Gusset edge axial force
N
 = 
 = -300.5
[kips]

Gusset edge moment force
M
 = 
 = 452.14
[kip-ft]

Gusset edge interface length
L
 = 
 = 54.000
[in]

Gusset edge equivalent normal force
Ne
 = N -
4 M/L
 = -702.4
[kips]
AISC DG29  Fig B-1


 
Concentrated force from gusset
Pu
 = 
 = 702.4
[kips]

Beam section
d
 = 22.100
[in]
tf
 = 1.150
[in]

tw
 = 0.720
[in]
k
 = 1.650
[in]

yield Fy
 = 50.0
[ksi]
E
 = 29000
[ksi]



Length of bearing
lb
 = gusset-beam weld length
 = 54.000
[in]

Beam web local crippling strength
Rn
 = 0.8 t2w [1+3
lb/d
(
tw/tf
)1.5 ] x
 = 2923.0
[kips]
AISC 15th  Eq J10-4
(
E Fy tf/tw
)0.5

Resistance factor-LRFD
φ
 = 0.75
AISC 15th  J10.3
φRn
 = 
 = 2192.3
[kips]

ratio
 = 0.32
 > Pu
OK
 
Beam Web Longitudinal Shear Yielding
ratio = 491.0 / 2638.4
0.19
PASS
Beam Web Effective Length for Transmitting Shear


Refer to AISC Design Example v14.2 Page IIC-70 for formula below to calculate beam web effective length
in transmitting shear along Sect a-a
 
Beam sect W21X147
d
 = 22.100
[in]
bf
 = 12.500
[in]

tf
 = 1.150
[in]
tw
 = 0.720
[in]

k
 = 1.650
[in]
Fy
 = 50.0
[ksi]

 
Gusset edge interface length
L
 = 
 = 54.000
[in]

φt
 = 0.90
φv
 = 1.00

Beam web effective length for transmitting shear
Leff
 = L + 5k +
2 φt bf tf/φv 0.6 tw
 = 122.146
[in]



Gusset edge shear (Sect a-a)
Vu
 = 
 = 491.0
[kips]

Beam web shear strength
Rn
 = 0.6 Fy tw Leff
 = 2638.4
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 2638.4
[kips]

ratio
 = 0.19
 > Vu
OK
 
Beam Web Transverse Section Shear Yielding
ratio = 305.2 / 477.4
0.64
PASS
 
Beam sect W21X147
d
 = 22.100
[in]
tw
 = 0.720
[in]



Right brace axial force
P1
 = from user input
 = -559.7
[kips]
in tension
Right brace to hor line angle
θ1
 = from user input
 = 45.0
[°]

Right brace force ver component
V1
 = P1 sin θ1
 = -395.8
[kips]

Gusset edge shear (Sect b-b)
V'
 = 
 = 44.6
[kips]

 
Transfer force from chev brace on the other side of beam or column
Ab
 = from user input
 = -46.0
[kips]
in compression
 
Beam web transverse shear
Vu
 = V1 + V' - Ab
 = 305.2
[kips]



Beam web shear strength
Rn
 = 0.6 Fy d tw Cv
 = 477.4
[kips]
AISC 15th  Eq G2-1
Cv
 = 1.00
AISC 15th  Eq G2-2
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq G2-1
φ Rn
 = 
 = 477.4
[kips]

ratio
 = 0.64
 > Vu
OK
 
 
 
 
Brace Force LC4
PR= 134.7 kips (C)
PL= -559.7 kips (T)
ratio = 1.08
FAIL

Gusset Plate - Shear Yielding (Sect a-a)
ratio = 491.0 / 1215.0
0.40
PASS
Plate Shear Yielding Check



Plate size
width bp
 = 54.000
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Agv
 = bp tp
 = 40.500
[in2]

Shear force required
Vu
 = 
 = 491.0
[kips]

Plate shear yielding strength
Rn
 = 0.6 Fy Agv
 = 1215.0
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 1215.0
[kips]

ratio
 = 0.40
 > Vu
OK
 
Gusset Plate - Shear Rupture (Sect a-a)
ratio = 491.0 / 1184.6
0.41
PASS
Plate Shear Rupture Check



Plate size
width bp
 = 54.000
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in shear
Anv
 = bp tp
 = 40.500
[in2]

Shear force in demand
Vu
 = 
 = 491.0
[kips]

Plate shear rupture strength
Rn
 = 0.6 Fu Anv
 = 1579.5
[kips]
AISC 15th  Eq J4-4
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-4
φ Rn
 = 
 = 1184.6
[kips]

ratio
 = 0.41
 > Vu
OK
 
 
Gusset Plate - Axial Tensile Yield (Sect a-a)
ratio = 702.4 / 1822.5
0.39
PASS
Gusset Edge Equivalent Normal Force


Refer to AISC DG29  Fig. B-1 for formula below to calculate gusset edge equivalent normal force
 
Gusset edge axial force
N
 = 
 = -300.5
[kips]

Gusset edge moment force
M
 = 
 = 452.14
[kip-ft]

Gusset edge interface length
L
 = 
 = 54.000
[in]

Gusset edge equivalent normal force
Ne
 = N -
4 M/L
 = -702.4
[kips]
AISC DG29  Fig B-1


Plate Tensile Yielding Check



Plate size
width bp
 = 54.000
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Ag
 = bp tp
 = 40.500
[in2]

Tensile force required
Pu
 = 
 = 702.4
[kips]

Plate tensile yielding strength
Rn
 = Fy Ag
 = 2025.0
[kips]
AISC 15th  Eq J4-1
Resistance factor-LRFD
φ
 = 0.90
AISC 15th  Eq J4-1
φ Rn
 = 
 = 1822.5
[kips]

ratio
 = 0.39
 > Pu
OK
 
Gusset Plate - Axial Tensile Rupture (Sect a-a)
ratio = 702.4 / 1974.4
0.36
PASS
Gusset Edge Equivalent Normal Force


Refer to AISC DG29  Fig. B-1 for formula below to calculate gusset edge equivalent normal force
 
Gusset edge axial force
N
 = 
 = -300.5
[kips]

Gusset edge moment force
M
 = 
 = 452.14
[kip-ft]

Gusset edge interface length
L
 = 
 = 54.000
[in]

Gusset edge equivalent normal force
Ne
 = N -
4 M/L
 = -702.4
[kips]
AISC DG29  Fig B-1


Plate Tensile Rupture Check



Plate size
width bp
 = 54.000
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in tension
Ant
 = bp tp
 = 40.500
[in2]

Tensile force required
Pu
 = 
 = 702.4
[kips]

Plate tensile rupture strength
Rn
 = Fu Ant
 = 2632.5
[kips]
AISC 15th  Eq J4-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-2
φ Rn
 = 
 = 1974.4
[kips]
AISC 15th  Eq J4-2
ratio
 = 0.36
 > Pu
OK
 
 
Gusset Plate - Flexural Yield Interact (Sect a-a)
ratio =
0.31
PASS
Gusset plate
width bp
 = 54.000
[in]
thick tp
 = 0.750
[in]

yield Fy
 = 50.0
[ksi]

Shear plate - gross area
Ag
 = bp x tp
 = 40.500
[in2]

Shear plate - plastic modulus
Zp
 = ( bp x t2p ) / 4
 = 546.75
[in3]

Flexural strength available
Mc
 = φ Fy Zp     φ=0.90
 = 2050.31
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 452.14
[kip-ft]

 
Axial strength available
Pc
 = from axial tensile yield check
 = 1822.5
[kips]

Axial strength required
Pr
 = from gusset interface forces calc
 = -300.5
[kips]

 
Shear strength available
Vc
 = from shear yielding check
 = 1215.0
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 491.0
[kips]

 
Flexural yield interaction
ratio
 = (
Vr/Vc
)2 + (
Pr/Pc
+
Mr/Mc
)2
 = 0.31
AISC 15th  Eq 10-5
 < 1.0
OK
 
Gusset Plate - Flexural Rupture Interact (Sect a-a)
ratio =
0.30
PASS
Gusset plate
width bp
 = 54.000
[in]
thick tp
 = 0.750
[in]

tensile Fu
 = 65.0
[ksi]

Net area of plate
An
 = bp x tp
 = 40.500
[in2]

Plastic modulus of net section
Znet
 = ( bp x t2p ) / 4
 = 546.75
[in3]

Flexural strength available
Mc
 = φ Fu Znet     φ=0.75
 = 2221.17
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 452.14
[kip-ft]

 
Axial strength available
Pc
 = from axial tensile rupture check
 = 1974.4
[kips]

Axial strength required
Pr
 = from gusset interface forces calc
 = -300.5
[kips]

 
Shear strength available
Vc
 = from shear rupture check
 = 1184.6
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 491.0
[kips]

 
Flexural rupture interaction
ratio
 = (
Vr/Vc
)2 + (
Pr/Pc
+
Mr/Mc
)2
 = 0.30
AISC 15th  Eq 10-5
 < 1.0
OK
 
 
Gusset Plate - Shear Yielding (Sect b-b)
ratio = 44.6 / 704.1
0.06
PASS
Plate Shear Yielding Check



Plate size
width bp
 = 31.294
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Agv
 = bp tp
 = 23.471
[in2]

Shear force required
Vu
 = 
 = 44.6
[kips]

Plate shear yielding strength
Rn
 = 0.6 Fy Agv
 = 704.1
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 704.1
[kips]

ratio
 = 0.06
 > Vu
OK
 
Gusset Plate - Shear Rupture (Sect b-b)
ratio = 44.6 / 686.5
0.06
PASS
Plate Shear Rupture Check



Plate size
width bp
 = 31.294
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in shear
Anv
 = bp tp
 = 23.471
[in2]

Shear force in demand
Vu
 = 
 = 44.6
[kips]

Plate shear rupture strength
Rn
 = 0.6 Fu Anv
 = 915.3
[kips]
AISC 15th  Eq J4-4
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-4
φ Rn
 = 
 = 686.5
[kips]

ratio
 = 0.06
 > Vu
OK
 
 
Gusset Plate - Axial Tensile Yield (Sect b-b)
ratio = 403.8 / 1056.2
0.38
PASS
Gusset Edge Equivalent Normal Force


Refer to AISC DG29  Fig. B-1 for formula below to calculate gusset edge equivalent normal force
 
Gusset edge axial force
N
 = 
 = -150.3
[kips]

Gusset edge moment force
M
 = 
 = 165.25
[kip-ft]

Gusset edge interface length
L
 = 
 = 31.294
[in]

Gusset edge equivalent normal force
Ne
 = N -
4 M/L
 = -403.8
[kips]
AISC DG29  Fig B-1


Plate Tensile Yielding Check



Plate size
width bp
 = 31.294
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Ag
 = bp tp
 = 23.471
[in2]

Tensile force required
Pu
 = 
 = 403.8
[kips]

Plate tensile yielding strength
Rn
 = Fy Ag
 = 1173.5
[kips]
AISC 15th  Eq J4-1
Resistance factor-LRFD
φ
 = 0.90
AISC 15th  Eq J4-1
φ Rn
 = 
 = 1056.2
[kips]

ratio
 = 0.38
 > Pu
OK
 
Gusset Plate - Axial Tensile Rupture (Sect b-b)
ratio = 403.8 / 1144.2
0.35
PASS
Gusset Edge Equivalent Normal Force


Refer to AISC DG29  Fig. B-1 for formula below to calculate gusset edge equivalent normal force
 
Gusset edge axial force
N
 = 
 = -150.3
[kips]

Gusset edge moment force
M
 = 
 = 165.25
[kip-ft]

Gusset edge interface length
L
 = 
 = 31.294
[in]

Gusset edge equivalent normal force
Ne
 = N -
4 M/L
 = -403.8
[kips]
AISC DG29  Fig B-1


Plate Tensile Rupture Check



Plate size
width bp
 = 31.294
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in tension
Ant
 = bp tp
 = 23.471
[in2]

Tensile force required
Pu
 = 
 = 403.8
[kips]

Plate tensile rupture strength
Rn
 = Fu Ant
 = 1525.6
[kips]
AISC 15th  Eq J4-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-2
φ Rn
 = 
 = 1144.2
[kips]
AISC 15th  Eq J4-2
ratio
 = 0.35
 > Pu
OK
 
 
Gusset Plate - Flexural Yield Interact (Sect b-b)
ratio =
0.15
PASS
Gusset plate
width bp
 = 31.294
[in]
thick tp
 = 0.750
[in]

yield Fy
 = 50.0
[ksi]

Shear plate - gross area
Ag
 = bp x tp
 = 23.471
[in2]

Shear plate - plastic modulus
Zp
 = ( bp x t2p ) / 4
 = 183.62
[in3]

Flexural strength available
Mc
 = φ Fy Zp     φ=0.90
 = 688.58
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 165.25
[kip-ft]

 
Axial strength available
Pc
 = from axial tensile yield check
 = 1056.2
[kips]

Axial strength required
Pr
 = from gusset interface forces calc
 = -150.3
[kips]

 
Shear strength available
Vc
 = from shear yielding check
 = 704.1
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 44.6
[kips]

 
Flexural yield interaction
ratio
 = (
Vr/Vc
)2 + (
Pr/Pc
+
Mr/Mc
)2
 = 0.15
AISC 15th  Eq 10-5
 < 1.0
OK
 
Gusset Plate - Flexural Rupture Interact (Sect b-b)
ratio =
0.13
PASS
Gusset plate
width bp
 = 31.294
[in]
thick tp
 = 0.750
[in]

tensile Fu
 = 65.0
[ksi]

Net area of plate
An
 = bp x tp
 = 23.471
[in2]

Plastic modulus of net section
Znet
 = ( bp x t2p ) / 4
 = 183.62
[in3]

Flexural strength available
Mc
 = φ Fu Znet     φ=0.75
 = 745.96
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 165.25
[kip-ft]

 
Axial strength available
Pc
 = from axial tensile rupture check
 = 1144.2
[kips]

Axial strength required
Pr
 = from gusset interface forces calc
 = -150.3
[kips]

 
Shear strength available
Vc
 = from shear rupture check
 = 686.5
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 44.6
[kips]

 
Flexural rupture interaction
ratio
 = (
Vr/Vc
)2 + (
Pr/Pc
+
Mr/Mc
)2
 = 0.13
AISC 15th  Eq 10-5
 < 1.0
OK
 
 
Gusset to Beam Weld Strength
ratio = 19.04 / 17.55
1.08
FAIL
Gusset to Beam Interface - Forces
shear V
 = 491.0
[kips]
axial N
 = -300.5
[kips]   in tension
moment M
 = 452.14
[kip-ft]

Gusset to Beam Interface - Weld Length
Gusset-beam fillet weld length
Lw
 = 
 = 54.000
[in]

Gusset to Beam Interface - Combined Weld Stress
Weld stress from axial force
fa
 = N / Lw
 = -5.565
[kip/in]
in tension
Weld stress from shear force
fv
 = V / Lw
 = 9.093
[kip/in]

Weld stress from moment force
fb
 = 
M/L2 / 6
 = 11.164
[kip/in]

Weld stress combined - max
fmax
 = [ (fa - fb )2 + f2v ]0.5
 = 19.040
[kip/in]
AISC 15th  Eq 8-11
Weld resultant load angle
θ
 = tan-1 [( fb - fa ) / fv ]
 = 61.5
[°]

Fillet Weld Strength Calc
Fillet weld leg size
w
 = 716
[in]
load angle θ
 = 61.5
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 2   for double fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.41
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 36.681
[kip/in]
AISC 15th  Eq 8-1


Base metal - gusset plate
thickness t
 = 0.750
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - gusset plate is in shear, shear rupture as per AISC 15th  Eq J4-4 is checked
AISC 15th  J2.4
Base metal shear rupture
Rn-b
 = 0.6 Fu t
 = 29.250
[kip/in]
AISC 15th  Eq J4-4


Double fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 29.250
[kip/in]
AISC 15th  Eq 9-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 21.938
[kip/in]

 
When gusset plate is directly welded to beam or column, apply 1.25 ductility factor
to allow adequate force redistribution in the weld group
AISC 15th  Page 13-11
 
Weld strength used for design after applying ductility factor
φ Rn
 = φ Rn x ( 1/1.25 )
 = 17.550
[kip/in]

ratio
 = 1.08
 < fmax
NG


The fail is caused by base metal rupture not by weld metal rupture as such increasing weld size won't help.
The user has the following options to get this check passed
    1) Increase the base metal thickness or strength
    2) Increase the weld length
    3) Reduce the force in demand

 
 
Column Web Local Yielding
ratio = 702.4 / 2241.0
0.31
PASS
Gusset Edge Equivalent Normal Force


Refer to AISC DG29  Fig. B-1 for formula below to calculate gusset edge equivalent normal force
 
Gusset edge axial force
N
 = 
 = -300.5
[kips]

Gusset edge moment force
M
 = 
 = 452.14
[kip-ft]

Gusset edge interface length
L
 = 
 = 54.000
[in]

Gusset edge equivalent normal force
Ne
 = N -
4 M/L
 = -702.4
[kips]
AISC DG29  Fig B-1


 
Concentrated force from gusset
Pu
 = 
 = 702.4
[kips]

Beam section
d
 = 22.100
[in]
tf
 = 1.150
[in]

tw
 = 0.720
[in]
k
 = 1.650
[in]

yield Fy
 = 50.0
[ksi]



Length of bearing
lb
 = gusset-beam weld length
 = 54.000
[in]

 
Beam web local yielding strength
Rn
 = Fy tw ( 5 k + lb )
 = 2241.0
[kips]
AISC 15th  Eq J10-2
Resistance factor-LRFD
φ
 = 1.00
φ Rn
 = 
 = 2241.0
[kips]

ratio
 = 0.31
 > Pu
OK
 
Column Web Local Crippling
ratio = 702.4 / 2192.3
0.32
PASS
Gusset Edge Equivalent Normal Force


Refer to AISC DG29  Fig. B-1 for formula below to calculate gusset edge equivalent normal force
 
Gusset edge axial force
N
 = 
 = -300.5
[kips]

Gusset edge moment force
M
 = 
 = 452.14
[kip-ft]

Gusset edge interface length
L
 = 
 = 54.000
[in]

Gusset edge equivalent normal force
Ne
 = N -
4 M/L
 = -702.4
[kips]
AISC DG29  Fig B-1


 
Concentrated force from gusset
Pu
 = 
 = 702.4
[kips]

Beam section
d
 = 22.100
[in]
tf
 = 1.150
[in]

tw
 = 0.720
[in]
k
 = 1.650
[in]

yield Fy
 = 50.0
[ksi]
E
 = 29000
[ksi]



Length of bearing
lb
 = gusset-beam weld length
 = 54.000
[in]

Beam web local crippling strength
Rn
 = 0.8 t2w [1+3
lb/d
(
tw/tf
)1.5 ] x
 = 2923.0
[kips]
AISC 15th  Eq J10-4
(
E Fy tf/tw
)0.5

Resistance factor-LRFD
φ
 = 0.75
AISC 15th  J10.3
φRn
 = 
 = 2192.3
[kips]

ratio
 = 0.32
 > Pu
OK
 
Beam Web Longitudinal Shear Yielding
ratio = 491.0 / 2638.4
0.19
PASS
Beam Web Effective Length for Transmitting Shear


Refer to AISC Design Example v14.2 Page IIC-70 for formula below to calculate beam web effective length
in transmitting shear along Sect a-a
 
Beam sect W21X147
d
 = 22.100
[in]
bf
 = 12.500
[in]

tf
 = 1.150
[in]
tw
 = 0.720
[in]

k
 = 1.650
[in]
Fy
 = 50.0
[ksi]

 
Gusset edge interface length
L
 = 
 = 54.000
[in]

φt
 = 0.90
φv
 = 1.00

Beam web effective length for transmitting shear
Leff
 = L + 5k +
2 φt bf tf/φv 0.6 tw
 = 122.146
[in]



Gusset edge shear (Sect a-a)
Vu
 = 
 = 491.0
[kips]

Beam web shear strength
Rn
 = 0.6 Fy tw Leff
 = 2638.4
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 2638.4
[kips]

ratio
 = 0.19
 > Vu
OK
 
Beam Web Transverse Section Shear Yielding
ratio = 78.2 / 477.4
0.16
PASS
 
Beam sect W21X147
d
 = 22.100
[in]
tw
 = 0.720
[in]



Right brace axial force
P1
 = from user input
 = 134.7
[kips]
in compression
Right brace to hor line angle
θ1
 = from user input
 = 45.0
[°]

Right brace force ver component
V1
 = P1 sin θ1
 = 95.2
[kips]

Gusset edge shear (Sect b-b)
V'
 = 
 = -44.6
[kips]

 
Transfer force from chev brace on the other side of beam or column
Ab
 = from user input
 = -27.6
[kips]
 
Beam web transverse shear
Vu
 = V1 + V' - Ab
 = 78.2
[kips]



Beam web shear strength
Rn
 = 0.6 Fy d tw Cv
 = 477.4
[kips]
AISC 15th  Eq G2-1
Cv
 = 1.00
AISC 15th  Eq G2-2
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq G2-1
φ Rn
 = 
 = 477.4
[kips]

ratio
 = 0.16
 > Vu
OK