Sketch
Vertical Brace Connection
Code=AISC 360-16 LRFD

 
 
 
 
 

Result Summary - Overall
Seismic Braced Frame - SCBF
Code=AISC 360-16 LRFD

Result Summary - Overall
geometries & weld limitations = PASS
limit states max ratio 
1.01
FAIL
 
Seismic - SCBF   Load Case LC1 & LC2


 
Top Brace - Brace to Gusset
geometries & weld limitations = PASS
limit states max ratio 
0.97
PASS
 
Top Brace - Gusset to Column
geometries & weld limitations = PASS
limit states max ratio 
0.82
PASS
 
Top Brace - Gusset to Beam
geometries & weld limitations = PASS
limit states max ratio 
0.79
PASS


 
Bot Brace - Brace to Gusset
geometries & weld limitations = PASS
limit states max ratio 
1.01
FAIL
 
Bot Brace - Gusset to Column
geometries & weld limitations = PASS
limit states max ratio 
0.98
PASS
 
Bot Brace - Gusset to Beam
geometries & weld limitations = PASS
limit states max ratio 
0.82
PASS


 
Beam to Column
geometries & weld limitations = PASS
limit states max ratio 
0.97
PASS
 
Beam Splice
geometries & weld limitations = PASS
limit states max ratio 
0.28
PASS
 
Seismic - SCBF   Load Case LC3 & LC4


 
Top Brace - Gusset to Column
geometries & weld limitations = PASS
limit states max ratio 
0.82
PASS
 
Top Brace - Gusset to Beam
geometries & weld limitations = PASS
limit states max ratio 
0.79
PASS


 
Bot Brace - Gusset to Column
geometries & weld limitations = PASS
limit states max ratio 
0.98
PASS
 
Bot Brace - Gusset to Beam
geometries & weld limitations = PASS
limit states max ratio 
0.82
PASS


 
Beam to Column
geometries & weld limitations = PASS
limit states max ratio 
0.69
PASS
 
Beam Splice
geometries & weld limitations = PASS
limit states max ratio 
0.61
PASS
 
 
 

Seismic Calculation
Brace Seismic System = SCBF
Code=AISC 360-16 LRFD

Seismic Brace Axial Forces Calc & Design Cases Summary
 
Top Brace Section Properties & Member Data


Brace sect HSS6.875X0.500
Grade
 = A500 Gr.C Round
Fy
 = 46.0
[ksi]

 
Ratio of expected Fy to specified min Fy
Ry
 = 1.30
AISC 341-16  Table A3.1
 
Ag
 = 9.360
[in2]
ry
 = 2.272
[in]

E
 = 29000
[ksi]

 
Brace member length & effective length factor K
L
 = 144.0
[in]
K
 = 1.00

 
Top Brace Seismic Design Force in Tension


 
Brace expected yield strength in tension
Pet
 = Ry Fy Ag
 = 559.7
[kips]
AISC 341-16 F2.6c (1)
 
Top Brace seismic design force in tension
Ps_t
 = Pet
 = -559.7
[kips]
AISC 341-16 F2.6c (1)
 
Top Brace Seismic Design Force in Compression


 
Member length L & effective length factor K
L
 = 144.0
[in]
K
 = 1.00

 
Member radius of gyration & elastic modulus
r
 = 2.272
[in]
E
 = 29000
[ksi]

 
Member slenderness ratio
KL/r
 = K x L  / r
 = 63.37

 
Elastic buckling stress
Fe
 = 
π2 E/( KL/r )2
 = 71.27
[ksi]
AISC 15th  Eq E3-4
when  
KL/r
  ≤   4.71 (
E/Ry Fy
) 0.5 = 103.72
AISC 15th  E3
 
Critical stress
Fcr
 = 0.658 ( Ry Fy / Fe )  Ry Fy
 = 42.09
[ksi]
AISC 15th  Eq E3-2


 
Brace expected yield strength in compression
Pec
 = min ( Ry Fy Ag , 1.14 Fcr Ag )
 = 449.1
[kips]
AISC 341-16 F2.3
Brace force in compression
Pc
 = from user input in load section
 = 0.0
[kips]

 
Top Brace seismic design force in compression
Ps_ci
 = Pec
 = 449.1
[kips]
AISC 341-16 F2.6c (2)
 
Top Brace seismic design force in compression - post-buckling
Ps_cii
 = 0.3 x Pec
 = 134.7
[kips]
AISC 341-16 F2.3 (ii)
 


 
 
Bot Brace Section Properties & Member Data


Brace sect HSS7.500X0.500
Grade
 = A500 Gr.C Round
Fy
 = 46.0
[ksi]

 
Ratio of expected Fy to specified min Fy
Ry
 = 1.30
AISC 341-16  Table A3.1
 
Ag
 = 10.300
[in2]
ry
 = 2.493
[in]

E
 = 29000
[ksi]

 
Brace member length & effective length factor K
L
 = 144.0
[in]
K
 = 1.00

 
Bot Brace Seismic Design Force in Tension


 
Brace expected yield strength in tension
Pet
 = Ry Fy Ag
 = 615.9
[kips]
AISC 341-16 F2.6c (1)
 
Bot Brace seismic design force in tension
Ps_t
 = Pet
 = -615.9
[kips]
AISC 341-16 F2.6c (1)
 
Bot Brace Seismic Design Force in Compression


 
Member length L & effective length factor K
L
 = 144.0
[in]
K
 = 1.00

 
Member radius of gyration & elastic modulus
r
 = 2.493
[in]
E
 = 29000
[ksi]

 
Member slenderness ratio
KL/r
 = K x L  / r
 = 57.77

 
Elastic buckling stress
Fe
 = 
π2 E/( KL/r )2
 = 85.76
[ksi]
AISC 15th  Eq E3-4
when  
KL/r
  ≤   4.71 (
E/Ry Fy
) 0.5 = 103.72
AISC 15th  E3
 
Critical stress
Fcr
 = 0.658 ( Ry Fy / Fe )  Ry Fy
 = 44.66
[ksi]
AISC 15th  Eq E3-2


 
Brace expected yield strength in compression
Pec
 = min ( Ry Fy Ag , 1.14 Fcr Ag )
 = 524.4
[kips]
AISC 341-16 F2.3
Brace force in compression
Pc
 = from user input in load section
 = 0.0
[kips]

 
Bot Brace seismic design force in compression
Ps_ci
 = Pec
 = 524.4
[kips]
AISC 341-16 F2.6c (2)
 
Bot Brace seismic design force in compression - post-buckling
Ps_cii
 = 0.3 x Pec
 = 157.3
[kips]
AISC 341-16 F2.3 (ii)
 


 
Brace Axial Force Design Cases Summary


Refer to AISC 341-16 F2.3(i), LC1 & LC2 are the load cases in which all braces are assumed to resist forces corresponding to their expected strength in tension Ps_t   or in compression Ps_ci
 
F2.3(ii), LC3 & LC4 are the load cases in which all braces are assumed to resist forces corresponding to their
expected strength in tension Ps_t   and all braces in compression are assumed to resist their expected
compressive post-buckling strength Ps_cii
 
LC1       Top Brace   Ps_t =-559.7 kips (T)                   Bot Brace   Ps_ci =524.4 kips (C)
AISC 341-16 F2.3(i)
 
LC2       Top Brace   Ps_ci =449.1 kips (C)                   Bot Brace   Ps_t =-615.9 kips (T)
 
LC3       Top Brace   Ps_t =-559.7 kips (T)                   Bot Brace   Ps_cii =157.3 kips (C)       post-buckling
AISC 341-16 F2.3(ii)
 
LC4       Top Brace   Ps_cii =134.7 kips (C)                   Bot Brace   Ps_t =-615.9 kips (T)       post-buckling
 
 
 

 
Seismic - SCBF  LC1 & LC2  Gusset Interface Forces Calc
 

 
 


Brace - SCBF   Load Case LC1


 
Top and bottom brace force
Top Ptop
 = -559.7
[kips] (T)
Bot Pbot
 = 524.4
[kips] (C)

Beam end shear & transfer force
Shear Rb
 = 19.9
[kips]
Transfer Ab
 = -46.3
[kips]

 
 


Top Brace Interface Forces


Refer to AISC 15th  Page 13-4 and Fig. 13-2 for all charts and definitions of variables and symbols shown in calculation below
eb
 = 12.350
[in]
ec
 = 6.450
[in]

α
 = 14.000
[in]
β
 = 9.625
[in]

θ
 = 45.0
[°]

K
 = eb tanθ - ec
 = 5.900
[in]
AISC 15th  Eq. 13-16
D
 = tan2 θ + (
α/β
)2
 = 3.116
AISC 15th  Eq. 13-24
K'
 = α ( tan θ +
α/β
)
 = 34.364
AISC 15th  Eq. 13-23
α
 = [ K' tan θ + K (
α/β
)2 ] / D
 = 14.000
[in]
AISC 15th  Eq. 13-21
β
 = ( K' - K tan θ ) / D
 = 8.100
[in]
AISC 15th  Eq. 13-22
r
 = [ ( eb + β ) 2 + ( ec + α ) 2 ]0.5
 = 28.921
[in]
AISC 15th  Eq. 13-6


Brace axial force
Pu
 = from seismic brace force calc
 = -559.7
[kips]
in tension
Gusset to Column Interface Forces

Shear force
Vc
 = ( β / r ) Pu
 = -156.8
[kips]
AISC 15th  Eq. 13-2
Axial force
Hc
 = ( ec / r ) Pu
 = -124.8
[kips]
AISC 15th  Eq. 13-3
Moment
Mc
 = Hc ( β - β )
 = 15.86
[kip-ft]
AISC 15th  Eq. 13-19
Gusset to Beam Interface Forces

Shear force
Hb
 = ( α / r ) Pu
 = -270.9
[kips]
AISC 15th  Eq. 13-5
Axial force
Vb
 = ( eb / r ) Pu
 = -239.0
[kips]
AISC 15th  Eq. 13-4
Moment
Mb
 = Vb ( α - α )
 = 0.00
[kip-ft]
AISC 15th  Eq. 13-17
 


Bottom Brace Interface Forces


Refer to AISC 15th  Page 13-4 and Fig. 13-2 for all charts and definitions of variables and symbols shown in calculation below
eb
 = 12.350
[in]
ec
 = 6.450
[in]

α
 = 14.750
[in]
β
 = 10.375
[in]

θ
 = 45.0
[°]

K
 = eb tanθ - ec
 = 5.900
[in]
AISC 15th  Eq. 13-16
D
 = tan2 θ + (
α/β
)2
 = 3.021
AISC 15th  Eq. 13-24
K'
 = α ( tan θ +
α/β
)
 = 35.720
AISC 15th  Eq. 13-23
α
 = [ K' tan θ + K (
α/β
)2 ] / D
 = 14.750
[in]
AISC 15th  Eq. 13-21
β
 = ( K' - K tan θ ) / D
 = 8.850
[in]
AISC 15th  Eq. 13-22
r
 = [ ( eb + β ) 2 + ( ec + α ) 2 ]0.5
 = 29.981
[in]
AISC 15th  Eq. 13-6


Brace axial force
Pu
 = from seismic brace force calc
 = 524.4
[kips]
in compression
Gusset to Column Interface Forces

Shear force
Vc
 = ( β / r ) Pu
 = 154.8
[kips]
AISC 15th  Eq. 13-2
Axial force
Hc
 = ( ec / r ) Pu
 = 112.8
[kips]
AISC 15th  Eq. 13-3
Moment
Mc
 = Hc ( β - β )
 = -14.34
[kip-ft]
AISC 15th  Eq. 13-19
Gusset to Beam Interface Forces

Shear force
Hb
 = ( α / r ) Pu
 = 258.0
[kips]
AISC 15th  Eq. 13-5
Axial force
Vb
 = ( eb / r ) Pu
 = 216.0
[kips]
AISC 15th  Eq. 13-4
Moment
Mb
 = Vb ( α - α )
 = 0.00
[kip-ft]
AISC 15th  Eq. 13-17
 


Beam to Column Interface Forces


Beam to Column Interface Shear Force
Beam end shear reaction
Rb
 = from user input
 = 19.9
[kips]

Top brace gusset-beam axial force
Vb-top
 = 
 = -239.0
[kips]
AISC 15th  Eq. 13-4
Bot brace gusset-beam axial force
Vb-bot
 = 
 = 216.0
[kips]
AISC 15th  Eq. 13-4
Beam to column shear force
Vb-c
 = Rb + Vb-top - Vb-bot
 = -435.1
[kips]
AISC 15th  Page 13-4
Beam to Column Interface Axial Force
Top brace gusset-column axial force
Hc-top
 = 
 = -124.8
[kips]
AISC 15th  Eq. 13-3
Bot brace gusset-column axial force
Hc-bot
 = 
 = 112.8
[kips]
AISC 15th  Eq. 13-3
Transfer force from adjacent bay
Ab
 = from user input
 = -46.3
[kips]

Beam to column axial force
Pb-c
 = ( Hc-top + Hc-bot ) x -1 - Ab
 = 58.3
[kips]
AISC 15th  Page 13-4
 


Beam Member Axial Force


This force is not for use in connection calc. It's output here for user input connection forces equilibrium check only.
Pbm - Beam member axial force is different from Pb-c - Beam to column interface axial force as shown above.

Pbm - Beam member axial force is from structural analysis output and cannot be used directly in beam end to column connection design as this force is interrupted by brace gusset to beam interface force before beam end reaching the column. This force is actually not needed from user's input for beam end to column connection design.

 
Pb-c - Beam to column interface axial force is calculated from user's input of brace axial forces and trasnfer force using uniform force method. This force is used in the beam end to column connection design.

 
Pbm - Beam member axial force is not needed for the beam end to column connection design and is calculated here for verification purpose only. If it matches the structural analysis output, that means equilibrium is reached and user's input of brace axial forces and trasnfer force are correct.

 


Top brace axial force
Pt
 = from seismic brace force calc
 = -559.7
[kips]
in tension
Top brace to ver line angle
θt
 = from user input
 = 45.0
[°]

Top brace gusset-column axial force
Hct
 = from calc shown above
 = -124.8
[kips]
AISC 15th  Eq. 13-3


Bot brace axial force
Pb
 = from seismic brace force calc
 = 524.4
[kips]
in compression
Bot brace to ver line angle
θb
 = from user input
 = 45.0
[°]

Bot brace gusset-column axial force
Hcb
 = from calc shown above
 = 112.8
[kips]
AISC 15th  Eq. 13-3


Beam to column interface axial force
Pb-c
 = from calc shown above
 = 58.3
[kips]
AISC 15th  Page 13-4
 
Beam member axial force
Pbm
 = (Hct - Pt sinθt ) + (Hcb - Pb sinθb )
 = 71.3
[kips]
in compression
+ Pb-c

 


Brace - SCBF   Load Case LC2


 
Top and bottom brace force
Top Ptop
 = 449.1
[kips] (C)
Bot Pbot
 = -615.9
[kips] (T)

Beam end shear & transfer force
Shear Rb
 = 19.9
[kips]
Transfer Ab
 = -46.3
[kips]

 
 


Top Brace Interface Forces


Refer to AISC 15th  Page 13-4 and Fig. 13-2 for all charts and definitions of variables and symbols shown in calculation below
eb
 = 12.350
[in]
ec
 = 6.450
[in]

α
 = 14.000
[in]
β
 = 9.625
[in]

θ
 = 45.0
[°]

K
 = eb tanθ - ec
 = 5.900
[in]
AISC 15th  Eq. 13-16
D
 = tan2 θ + (
α/β
)2
 = 3.116
AISC 15th  Eq. 13-24
K'
 = α ( tan θ +
α/β
)
 = 34.364
AISC 15th  Eq. 13-23
α
 = [ K' tan θ + K (
α/β
)2 ] / D
 = 14.000
[in]
AISC 15th  Eq. 13-21
β
 = ( K' - K tan θ ) / D
 = 8.100
[in]
AISC 15th  Eq. 13-22
r
 = [ ( eb + β ) 2 + ( ec + α ) 2 ]0.5
 = 28.921
[in]
AISC 15th  Eq. 13-6


Brace axial force
Pu
 = from seismic brace force calc
 = 449.1
[kips]
in compression
Gusset to Column Interface Forces

Shear force
Vc
 = ( β / r ) Pu
 = 125.8
[kips]
AISC 15th  Eq. 13-2
Axial force
Hc
 = ( ec / r ) Pu
 = 100.2
[kips]
AISC 15th  Eq. 13-3
Moment
Mc
 = Hc ( β - β )
 = -12.73
[kip-ft]
AISC 15th  Eq. 13-19
Gusset to Beam Interface Forces

Shear force
Hb
 = ( α / r ) Pu
 = 217.4
[kips]
AISC 15th  Eq. 13-5
Axial force
Vb
 = ( eb / r ) Pu
 = 191.8
[kips]
AISC 15th  Eq. 13-4
Moment
Mb
 = Vb ( α - α )
 = 0.00
[kip-ft]
AISC 15th  Eq. 13-17
 


Bottom Brace Interface Forces


Refer to AISC 15th  Page 13-4 and Fig. 13-2 for all charts and definitions of variables and symbols shown in calculation below
eb
 = 12.350
[in]
ec
 = 6.450
[in]

α
 = 14.750
[in]
β
 = 10.375
[in]

θ
 = 45.0
[°]

K
 = eb tanθ - ec
 = 5.900
[in]
AISC 15th  Eq. 13-16
D
 = tan2 θ + (
α/β
)2
 = 3.021
AISC 15th  Eq. 13-24
K'
 = α ( tan θ +
α/β
)
 = 35.720
AISC 15th  Eq. 13-23
α
 = [ K' tan θ + K (
α/β
)2 ] / D
 = 14.750
[in]
AISC 15th  Eq. 13-21
β
 = ( K' - K tan θ ) / D
 = 8.850
[in]
AISC 15th  Eq. 13-22
r
 = [ ( eb + β ) 2 + ( ec + α ) 2 ]0.5
 = 29.981
[in]
AISC 15th  Eq. 13-6


Brace axial force
Pu
 = from seismic brace force calc
 = -615.9
[kips]
in tension
Gusset to Column Interface Forces

Shear force
Vc
 = ( β / r ) Pu
 = -181.8
[kips]
AISC 15th  Eq. 13-2
Axial force
Hc
 = ( ec / r ) Pu
 = -132.5
[kips]
AISC 15th  Eq. 13-3
Moment
Mc
 = Hc ( β - β )
 = 16.84
[kip-ft]
AISC 15th  Eq. 13-19
Gusset to Beam Interface Forces

Shear force
Hb
 = ( α / r ) Pu
 = -303.0
[kips]
AISC 15th  Eq. 13-5
Axial force
Vb
 = ( eb / r ) Pu
 = -253.7
[kips]
AISC 15th  Eq. 13-4
Moment
Mb
 = Vb ( α - α )
 = 0.00
[kip-ft]
AISC 15th  Eq. 13-17
 


Beam to Column Interface Forces


Beam to Column Interface Shear Force
Beam end shear reaction
Rb
 = from user input
 = 19.9
[kips]

Top brace gusset-beam axial force
Vb-top
 = 
 = 191.8
[kips]
AISC 15th  Eq. 13-4
Bot brace gusset-beam axial force
Vb-bot
 = 
 = -253.7
[kips]
AISC 15th  Eq. 13-4
Beam to column shear force
Vb-c
 = Rb + Vb-top - Vb-bot
 = 465.4
[kips]
AISC 15th  Page 13-4
Beam to Column Interface Axial Force
Top brace gusset-column axial force
Hc-top
 = 
 = 100.2
[kips]
AISC 15th  Eq. 13-3
Bot brace gusset-column axial force
Hc-bot
 = 
 = -132.5
[kips]
AISC 15th  Eq. 13-3
Transfer force from adjacent bay
Ab
 = from user input
 = -46.3
[kips]

Beam to column axial force
Pb-c
 = ( Hc-top + Hc-bot ) x -1 - Ab
 = 78.6
[kips]
AISC 15th  Page 13-4
 


Beam Member Axial Force


This force is not for use in connection calc. It's output here for user input connection forces equilibrium check only.
Pbm - Beam member axial force is different from Pb-c - Beam to column interface axial force as shown above.

Pbm - Beam member axial force is from structural analysis output and cannot be used directly in beam end to column connection design as this force is interrupted by brace gusset to beam interface force before beam end reaching the column. This force is actually not needed from user's input for beam end to column connection design.

 
Pb-c - Beam to column interface axial force is calculated from user's input of brace axial forces and trasnfer force using uniform force method. This force is used in the beam end to column connection design.

 
Pbm - Beam member axial force is not needed for the beam end to column connection design and is calculated here for verification purpose only. If it matches the structural analysis output, that means equilibrium is reached and user's input of brace axial forces and trasnfer force are correct.

 


Top brace axial force
Pt
 = from seismic brace force calc
 = 449.1
[kips]
in compression
Top brace to ver line angle
θt
 = from user input
 = 45.0
[°]

Top brace gusset-column axial force
Hct
 = from calc shown above
 = 100.2
[kips]
AISC 15th  Eq. 13-3


Bot brace axial force
Pb
 = from seismic brace force calc
 = -615.9
[kips]
in tension
Bot brace to ver line angle
θb
 = from user input
 = 45.0
[°]

Bot brace gusset-column axial force
Hcb
 = from calc shown above
 = -132.5
[kips]
AISC 15th  Eq. 13-3


Beam to column interface axial force
Pb-c
 = from calc shown above
 = 78.6
[kips]
AISC 15th  Page 13-4
 
Beam member axial force
Pbm
 = (Hct - Pt sinθt ) + (Hcb - Pb sinθb )
 = 71.6
[kips]
in compression
+ Pb-c

 
 

Top Brace - Brace to Gusset
Sect=HSS 6.875 x 0.500
P1 =-559.7 kips (T)
P2 =449.1 kips (C)
Code=AISC 360-16 LRFD

Result Summary
geometries & weld limitations = PASS
limit states max ratio 
0.97
PASS
 
 
Seismic SCBF Brace Highly Ductile Section Check
PASS
HSS Section Limiting Width-to-Thickness Ratio Check



 
Check HSS section limiting width-to-thickness ratio for HSS wall in compression as Highly Ductile section
per AISC Seismic Design Manual 3rd Ed Table 1-D
AISC SDM 3rd  Table 1-D
 
CHS sect HSS6.875X0.500
D
 = 6.875
[in]
t
 = 0.465
[in]

HSS sect HSS6.875X0.500
Fy
 = A500 Gr.C Round
 = 46.0
[ksi]

E
 = 29000
[ksi]

 
Ratio of expected Fy to specified min Fy
Ry
 = 1.30
AISC 341-16  Table A3.1
 


CHS width-to-thickness ratio limit
λhd
 = 0.053
E/Ry Fy
 = 25.70
AISC SDM 3rd  Table 1-D
CHS width-to-thickness ratio actual
D/t
 = D/t
 = 14.78

 ≤ λhd
OK
 
Brace Slot Effective Net Area Check
PASS
HSS With Reinforcing Plates Effective Net Area



CHS sect HSS6.875X0.500
D
 = 6.875
[in]
t
 = 0.465
[in]

Ag
 = 9.360
[in2]



Gusset plate thickness
tgp
 = from user input
 = 0.750
[in]

HSS cut slot width
w
 = tgp + 1/8"
 = 0.875
[in]

HSS brace net area
Anb
 = Ag - 2 w t
 = 8.546
[in2]



Reinforcing plate
wr
 = 1.250
[in]
tr
 = 1.250
[in]

Reinforcing plate area
Ar
 = wr x tr
 = 1.563
[in2]



CHS 1/2 net area A1 = 0.5Anb
A1
 = 4.273
[in2]
r1
 = 2.040
[in]

Reinforce plate
A2
 = 1.563
[in2]
r2
 = 4.063
[in]

 
Dist to centroid of comb sect
x
 = 
A1 r1 + A2 r2/A1 + A2
 = 2.582
[in]

Length of connection
L
 = 
 = 26.000
[in]

Shear lag factor
U
 = 1 - x / L
 = 0.901
AISC 15th  Table D3.1


Total net area
An
 = Anb + 2 x Ar
 = 11.671
[in2]

Total effective net area
Ae
 = U An
 = 10.512
[in2]



 
The brace effective net area shall not be less than the brace gross area
AISC 341-16 F2.5b (3)
 
HSS sect HSS6.875X0.500
Ag
 = brace gross area
 = 9.360
[in2]

Total brace effective net area
Ae
 = U An
 = 10.512
[in2]

 ≥ Ag
OK
AISC 341-16 F2.5b (3)


 
The specified minimum yield strength of the reinforce plate shall be at least the specified
minimum yield strength of the brace
AISC 341-16 F2.5b (3)(i)
 
HSS sect HSS6.875X0.500
Fy
 = A500 Gr.C Round
 = 46.0
[ksi]

Reinforce plate
Fyp
 = A992
 = 50.0
[ksi]

 ≥ Fy
OK
AISC 341-16 F2.5b (3)(i)
 
Brace Slot to Gusset Plate Weld Limitation Check
PASS
Min Fillet Weld Size


Thinner part joined thickness
t
 = 
 = 0.465
[in]

Min fillet weld size allowed
wmin
 = 
 = 0.188
[in]
AISC 15th  Table J2.4
Fillet weld size provided
w
 = 
 = 0.250
[in]

 ≥ wmin
OK
Min Fillet Weld Length


Fillet weld size provided
w
 = 
 = 0.250
[in]

Min fillet weld length allowed
Lmin
 = 4 x w
 = 1.000
[in]
AISC 15th  J2.2b
Min fillet weld length
L
 = 
 = 26.000
[in]

 ≥ Lmin
OK
 
 
 
 
Seismic SCBF LC1
Sect=HSS 6.875 x 0.500
P =-559.7 kips (T)
ratio = 0.97
PASS

 
HSS Brace Wall - Gusset PL - Shear Yield
ratio = 559.7 / 1735.2
0.32
PASS
HSS Brace Wall-Gusset Plate Shear Yielding



HSS sect HSS6.875X0.500 wall thick
t
 = 0.465
[in]
Fy
 = 46.0
[ksi]

HSS brace wall-gusset overlap length
L
 = 26.000
[in]

 
Ratio of expected Fy to specified min Fy
Ry
 = 1.30
AISC 341-16  Table A3.1


Beam axial load
Pu
 = from seismic load calc
 = 559.7
[kips]

 
HSS brace wall-gusset shear yielding
Rn
 = 0.6 Ry Fy t L x 4 walls
 = 1735.2
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 1735.2
[kips]

ratio
 = 0.32
 > Pu
OK
 
HSS Brace Wall - Gusset PL - Shear Rupture
ratio = 559.7 / 1619.1
0.35
PASS
HSS Brace Wall-Gusset Plate Shear Yielding



HSS sect HSS6.875X0.500 wall thick
t
 = 0.465
[in]
Fu
 = 62.0
[ksi]

HSS brace wall-gusset overlap length
L
 = 26.000
[in]

 
Ratio of expected Fu to specified min Fu
Rt
 = 1.20
AISC 341-16  Table A3.1


Beam axial load
Pu
 = from seismic load calc
 = 559.7
[kips]

 
HSS brace wall-gusset shear rupture
Rn
 = 0.6 Rt Fu t L x 4 walls
 = 2158.8
[kips]
AISC 15th  Eq J4-4
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-4
φ Rn
 = 
 = 1619.1
[kips]

ratio
 = 0.35
 > Pu
OK
 
 
Gusset Plate - Block Shear Rupture
ratio = 559.7 / 1128.9
0.50
PASS
Plate Block Shear - Center Strip



Plate thickness
tp
 = 0.750
[in]

Plate strength
Fy
 = 50.0
[ksi]
Fu
 = 65.0
[ksi]

C shape weld group size
width b
 = 26.000
[in]
depth d
 = 6.875
[in]

 


Gross area subject to shear
Agv
 = b tp x 2
 = 39.000
[in2]

Net area subject to shear
Anv
 = Agvb
 = 39.000
[in2]

Net area subject to tension
Ant
 = d tp
 = 5.156
[in2]



Block shear strength required
Vu
 = 
 = 559.7
[kips]

Uniform tension stress factor
Ubs
 = 1.00
AISC 15th  Fig C-J4.2
Bolt shear resistance provided
Rn
 = min (0.6Fu Anv , 0.6Fy Agv ) +
 = 1505.2
[kips]
AISC 15th  Eq J4-5
Ubs Fu Ant

Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-5
φ Rn
 = 
 = 1128.9
[kips]

ratio
 = 0.50
 > Vu
OK
 
 
Gusset Plate - Tensile Yield (Whitmore)
ratio = 559.7 / 963.3
0.58
PASS
Plate Tensile Yielding Check



Plate size
width bp
 = 28.541
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Ag
 = bp tp
 = 21.406
[in2]

Tensile force required
Pu
 = 
 = 559.7
[kips]

Plate tensile yielding strength
Rn
 = Fy Ag
 = 1070.3
[kips]
AISC 15th  Eq J4-1
Resistance factor-LRFD
φ
 = 0.90
AISC 15th  Eq J4-1
φ Rn
 = 
 = 963.3
[kips]

ratio
 = 0.58
 > Pu
OK
 
Gusset Plate - Tensile Rupture (Whitmore)
ratio = 559.7 / 1043.5
0.54
PASS
Plate Tensile Rupture Check



Plate size
width bp
 = 28.541
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in tension
Ant
 = bp tp
 = 21.406
[in2]

Tensile force required
Pu
 = 
 = 559.7
[kips]

Plate tensile rupture strength
Rn
 = Fu Ant
 = 1391.4
[kips]
AISC 15th  Eq J4-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-2
φ Rn
 = 
 = 1043.5
[kips]
AISC 15th  Eq J4-2
ratio
 = 0.54
 > Pu
OK
 
 
Brace Slot to Gusset Plate Weld Strength
ratio = 559.7 / 574.4
0.97
PASS
 
Fillet Weld Strength Check



Fillet weld leg size
w
 = 14
[in]
load angle θ
 = 0.0
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 2   for double fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.00
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 14.847
[kip/in]
AISC 15th  Eq 8-1


Base metal - brace
thickness t
 = 0.750
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - brace is in shear, shear rupture as per AISC 15th  Eq J4-4 is checked
AISC 15th  J2.4
Base metal shear rupture
Rn-b
 = 0.6 Fu t
 = 29.250
[kip/in]
AISC 15th  Eq J4-4


Double fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 14.847
[kip/in]
AISC 15th  Eq 9-2
 
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 11.135
[kip/in]



Shear resistance required
Vu
 = 
 = 559.7
[kips]



Fillet weld leg size
w
 = 14
[in]
max L
 = 26.000
[in]

when L/w = 104.0 >100 , weld length reduction applied
AISC 15th  J2.2b
Weld length reduction factor
β
 = 1.2 - 0.002 (L/w) ≤ 1.0
 = 0.99
AISC 15th  Eq J2-1
Weld length used for design
L
 = β x L
 = 51.584
[in]



Fillet weld length - double fillet
L
 = 
 = 51.584
[in]

Shear resistance provided
φ Fn
 = φ Rn x L
 = 574.4
[kips]

ratio
 = 0.97
 > Vu
OK
 
Reinforce Plate to Brace Wall Weld Strength
ratio = 85.9 / 175.7
0.49
PASS
Reinforcing plate
wr
 = 1.250
[in]
tr
 = 1.250
[in]

Fy
 = 50.0
[ksi]

 
Ratio of expected Fy to specified min Fy
Ry
 = 1.10
AISC 341-16  Table A3.1
 
Reinforcing plate area
Ar
 = wr x tr
 = 1.563
[in2]

 
Required strength of weld
Pu
 = Ry Fy Ar
 = 85.9
[kips]

 
Reinforce Plate to Brace Wall Fillet Weld Length
Longitudinal weld length
LL
 = reinforce plate length
 = 12.000
[in]

Transverse weld length
LT
 = reinforce plate width
 = 1.250
[in]

 
Total weld length - single fillet weld
L1
 = 2 x LL + LT
 = 25.250
[in]
AISC 15th  Eq J2-10a
L2
 = 0.85 x 2 x LL + 1.5 x LT
 = 22.275
[in]
AISC 15th  Eq J2-10b
L
 = max ( L1 , L2 )
 = 25.250
[in]
AISC 15th  J2.4 (c)
 
Fillet Weld Strength Check



Fillet weld leg size
w
 = 516
[in]
load angle θ
 = 0.0
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 1   for single fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.00
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 9.279
[kip/in]
AISC 15th  Eq 8-1


Base metal - reinforce plate
thickness t
 = 1.250
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - reinforce plate is in shear, shear rupture as per AISC 15th  Eq J4-4 is checked
AISC 15th  J2.4
Base metal shear rupture
Rn-b
 = 0.6 Fu t
 = 48.750
[kip/in]
AISC 15th  Eq J4-4


Single fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 9.279
[kip/in]
AISC 15th  Eq 9-2
 
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 6.960
[kip/in]



Shear resistance required
Pu
 = 
 = 85.9
[kips]

Fillet weld length - single fillet
L
 = 
 = 25.250
[in]

Shear resistance provided
φ Fn
 = φ Rn x L
 = 175.7
[kips]

ratio
 = 0.49
 > Pu
OK
 
 
 
Seismic SCBF LC2
Sect=HSS 6.875 x 0.500
P =449.1 kips (C)
ratio = 0.78
PASS

Gusset Plate - Compression (Whitmore)
ratio = 449.1 / 827.9
0.54
PASS
Plate Compression Check



Plate size
width bp
 = 28.541
[in]
thickness tp
 = 0.750
[in]

Fy
 = 50.0
[ksi]
E
 = 29000
[ksi]

Plate gross area in compression
Ag
 = bp tp
 = 21.406
[in2]



Plate radius of gyration
r
 = tp / 12
 = 0.217
[in]

Plate effective length factor
K
 = 
 = 0.60
Plate unbraced length
Lu
 = 
 = 16.420
[in]

Plate slenderness
KL/r
 = 0.60 x Lu  / r
 = 45.50



when  
KL/r
  >  25 , use Chapter E
AISC 15th  J4.4 (b)
Elastic buckling stress
Fe
 = 
π2 E/( KL/r )2
 = 138.23
[ksi]
AISC 15th  Eq E3-4
when  
KL/r
  ≤ 4.71 (
E/Fy
) 0.5 = 113.43
AISC 15th  E3 (a)
Critical stress
Fcr
 = 0.658 ( Fy / Fe )   Fy
 = 42.98
[ksi]
AISC 15th  Eq E3-2


Plate compression required
Pu
 = Pc = 449.1
 = 449.1
[kips]

Plate compression provided
Rn
 = Fcr x Ag
 = 919.9
[kips]
AISC 15th  Eq E3-1
Resistance factor-LRFD
φ
 = 0.90
AISC 15th  E1
φ Rn
 = 
 = 827.9
[kips]

ratio
 = 0.54
 > Pu
OK
 
 
Brace Slot to Gusset Plate Weld Strength
ratio = 449.1 / 574.4
0.78
PASS
 
Fillet Weld Strength Check



Fillet weld leg size
w
 = 14
[in]
load angle θ
 = 0.0
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 2   for double fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.00
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 14.847
[kip/in]
AISC 15th  Eq 8-1


Base metal - brace
thickness t
 = 0.750
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - brace is in shear, shear rupture as per AISC 15th  Eq J4-4 is checked
AISC 15th  J2.4
Base metal shear rupture
Rn-b
 = 0.6 Fu t
 = 29.250
[kip/in]
AISC 15th  Eq J4-4


Double fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 14.847
[kip/in]
AISC 15th  Eq 9-2
 
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 11.135
[kip/in]



Shear resistance required
Vu
 = 
 = 449.1
[kips]



Fillet weld leg size
w
 = 14
[in]
max L
 = 26.000
[in]

when L/w = 104.0 >100 , weld length reduction applied
AISC 15th  J2.2b
Weld length reduction factor
β
 = 1.2 - 0.002 (L/w) ≤ 1.0
 = 0.99
AISC 15th  Eq J2-1
Weld length used for design
L
 = β x L
 = 51.584
[in]



Fillet weld length - double fillet
L
 = 
 = 51.584
[in]

Shear resistance provided
φ Fn
 = φ Rn x L
 = 574.4
[kips]

ratio
 = 0.78
 > Vu
OK
 
Reinforce Plate to Brace Wall Weld Strength
ratio = 85.9 / 175.7
0.49
PASS
Reinforcing plate
wr
 = 1.250
[in]
tr
 = 1.250
[in]

Fy
 = 50.0
[ksi]

 
Ratio of expected Fy to specified min Fy
Ry
 = 1.10
AISC 341-16  Table A3.1
 
Reinforcing plate area
Ar
 = wr x tr
 = 1.563
[in2]

 
Required strength of weld
Pu
 = Ry Fy Ar
 = 85.9
[kips]

 
Reinforce Plate to Brace Wall Fillet Weld Length
Longitudinal weld length
LL
 = reinforce plate length
 = 12.000
[in]

Transverse weld length
LT
 = reinforce plate width
 = 1.250
[in]

 
Total weld length - single fillet weld
L1
 = 2 x LL + LT
 = 25.250
[in]
AISC 15th  Eq J2-10a
L2
 = 0.85 x 2 x LL + 1.5 x LT
 = 22.275
[in]
AISC 15th  Eq J2-10b
L
 = max ( L1 , L2 )
 = 25.250
[in]
AISC 15th  J2.4 (c)
 
Fillet Weld Strength Check



Fillet weld leg size
w
 = 516
[in]
load angle θ
 = 0.0
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 1   for single fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.00
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 9.279
[kip/in]
AISC 15th  Eq 8-1


Base metal - reinforce plate
thickness t
 = 1.250
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - reinforce plate is in shear, shear rupture as per AISC 15th  Eq J4-4 is checked
AISC 15th  J2.4
Base metal shear rupture
Rn-b
 = 0.6 Fu t
 = 48.750
[kip/in]
AISC 15th  Eq J4-4


Single fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 9.279
[kip/in]
AISC 15th  Eq 9-2
 
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 6.960
[kip/in]



Shear resistance required
Pu
 = 
 = 85.9
[kips]

Fillet weld length - single fillet
L
 = 
 = 25.250
[in]

Shear resistance provided
φ Fn
 = φ Rn x L
 = 175.7
[kips]

ratio
 = 0.49
 > Pu
OK
 
 
 

Top Brace - Gusset to Column
Direct Weld Connection
Code=AISC 360-16 LRFD

Result Summary
geometries & weld limitations = PASS
limit states max ratio 
0.82
PASS
 
 
Weld Limitation Checks - Gusset to Column
PASS
Min Fillet Weld Size


Thinner part joined thickness
t
 = 
 = 0.750
[in]

Min fillet weld size allowed
wmin
 = 
 = 0.250
[in]
AISC 15th  Table J2.4
Fillet weld size provided
w
 = 
 = 0.438
[in]

 ≥ wmin
OK
Min Fillet Weld Length


Fillet weld size provided
w
 = 
 = 0.438
[in]

Min fillet weld length allowed
Lmin
 = 4 x w
 = 1.750
[in]
AISC 15th  J2.2b
Min fillet weld length
L
 = 
 = 17.250
[in]

 ≥ Lmin
OK
 
 
 
 
Seismic SCBF LC1
P1 =-559.7 kips (T)
P2 =524.4 kips (C)
ratio = 0.82
PASS

Gusset Plate - Shear Yielding
ratio = 156.8 / 388.1
0.40
PASS
Plate Shear Yielding Check



Plate size
width bp
 = 17.250
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Agv
 = bp tp
 = 12.938
[in2]

Shear force required
Vu
 = 
 = 156.8
[kips]

Plate shear yielding strength
Rn
 = 0.6 Fy Agv
 = 388.1
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 388.1
[kips]

ratio
 = 0.40
 > Vu
OK
 
Gusset Plate - Shear Rupture
ratio = 156.8 / 378.4
0.41
PASS
Plate Shear Rupture Check



Plate size
width bp
 = 17.250
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in shear
Anv
 = bp tp
 = 12.938
[in2]

Shear force in demand
Vu
 = 
 = 156.8
[kips]

Plate shear rupture strength
Rn
 = 0.6 Fu Anv
 = 504.6
[kips]
AISC 15th  Eq J4-4
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-4
φ Rn
 = 
 = 378.4
[kips]

ratio
 = 0.41
 > Vu
OK
 
 
Gusset Plate - Axial Tensile Yield
ratio = 124.8 / 582.2
0.21
PASS
Plate Tensile Yielding Check



Plate size
width bp
 = 17.250
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Ag
 = bp tp
 = 12.938
[in2]

Tensile force required
Pu
 = 
 = 124.8
[kips]

Plate tensile yielding strength
Rn
 = Fy Ag
 = 646.9
[kips]
AISC 15th  Eq J4-1
Resistance factor-LRFD
φ
 = 0.90
AISC 15th  Eq J4-1
φ Rn
 = 
 = 582.2
[kips]

ratio
 = 0.21
 > Pu
OK
 
Gusset Plate - Axial Tensile Rupture
ratio = 124.8 / 630.7
0.20
PASS
Plate Tensile Rupture Check



Plate size
width bp
 = 17.250
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in tension
Ant
 = bp tp
 = 12.938
[in2]

Tensile force required
Pu
 = 
 = 124.8
[kips]

Plate tensile rupture strength
Rn
 = Fu Ant
 = 840.9
[kips]
AISC 15th  Eq J4-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-2
φ Rn
 = 
 = 630.7
[kips]
AISC 15th  Eq J4-2
ratio
 = 0.20
 > Pu
OK
 
 
Gusset Plate - Flexural Yield Interact
ratio =
0.25
PASS
Gusset plate
width bp
 = 17.250
[in]
thick tp
 = 0.750
[in]

yield Fy
 = 50.0
[ksi]

Shear plate - gross area
Ag
 = bp x tp
 = 12.938
[in2]

Shear plate - plastic modulus
Zp
 = ( bp x t2p ) / 4
 = 55.79
[in3]

Flexural strength available
Mc
 = φ Fy Zp     φ=0.90
 = 209.22
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 15.86
[kip-ft]

 
Axial strength available
Pc
 = from axial tensile yield check
 = 582.2
[kips]

Axial strength required
Pr
 = from gusset interface forces calc
 = -124.8
[kips]

 
Shear strength available
Vc
 = from shear yielding check
 = 388.1
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 156.8
[kips]

 
Flexural yield interaction
ratio
 = (
Vr/Vc
)2 + (
Pr/Pc
+
Mr/Mc
)2
 = 0.25
AISC 15th  Eq 10-5
 < 1.0
OK
 
Gusset Plate - Flexural Rupture Interact
ratio =
0.24
PASS
Gusset plate
width bp
 = 17.250
[in]
thick tp
 = 0.750
[in]

tensile Fu
 = 65.0
[ksi]

Net area of plate
An
 = bp x tp
 = 12.938
[in2]

Plastic modulus of net section
Znet
 = ( bp x t2p ) / 4
 = 55.79
[in3]

Flexural strength available
Mc
 = φ Fu Znet     φ=0.75
 = 226.66
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 15.86
[kip-ft]

 
Axial strength available
Pc
 = from axial tensile rupture check
 = 630.7
[kips]

Axial strength required
Pr
 = from gusset interface forces calc
 = -124.8
[kips]

 
Shear strength available
Vc
 = from shear rupture check
 = 378.4
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 156.8
[kips]

 
Flexural rupture interaction
ratio
 = (
Vr/Vc
)2 + (
Pr/Pc
+
Mr/Mc
)2
 = 0.24
AISC 15th  Eq 10-5
 < 1.0
OK
 
 
Gusset to Column Weld Strength
ratio = 14.33 / 17.55
0.82
PASS
Gusset to Column Interface - Forces
shear Vc
 = 156.8
[kips]
axial Hc
 = -124.8
[kips]   in tension
moment Mc
 = 15.86
[kip-ft]

Gusset to Column Interface - Weld Length
Gusset-column fillet weld length
Lwc
 = from user input
 = 17.250
[in]

Gusset to Column Interface - Combined Weld Stress
Weld stress from axial force
fa
 = Hc / Lwc
 = -7.235
[kip/in]
in tension
Weld stress from shear force
fv
 = Vc / Lwc
 = 9.090
[kip/in]

Weld stress from moment force
fb
 = 
M/L2 / 6
 = 3.838
[kip/in]

Weld stress combined - max
fmax
 = [ (fa - fb )2 + f2v ]0.5
 = 14.326
[kip/in]
AISC 15th  Eq 8-11
Weld resultant load angle
θ
 = tan-1 [( fb - fa ) / fv ]
 = 50.6
[°]

Fillet Weld Strength Calc
Fillet weld leg size
w
 = 716
[in]
load angle θ
 = 50.6
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 2   for double fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.34
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 34.810
[kip/in]
AISC 15th  Eq 8-1


Base metal - gusset plate
thickness t
 = 0.750
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - gusset plate is in shear, shear rupture as per AISC 15th  Eq J4-4 is checked
AISC 15th  J2.4
Base metal shear rupture
Rn-b
 = 0.6 Fu t
 = 29.250
[kip/in]
AISC 15th  Eq J4-4


Double fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 29.250
[kip/in]
AISC 15th  Eq 9-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 21.938
[kip/in]

 
When gusset plate is directly welded to beam or column, apply 1.25 ductility factor
to allow adequate force redistribution in the weld group
AISC 15th  Page 13-11
 
Weld strength used for design after applying ductility factor
φ Rn
 = φ Rn x ( 1/1.25 )
 = 17.550
[kip/in]

ratio
 = 0.82
 > fmax
OK
 
 
Column Web Local Yielding
ratio = 168.9 / 768.6
0.22
PASS
Gusset Edge Equivalent Normal Force


Refer to AISC DG29  Fig. B-1 for formula below to calculate gusset edge equivalent normal force
 
Gusset edge axial force
N
 = 
 = -124.8
[kips]

Gusset edge moment force
M
 = 
 = 15.86
[kip-ft]

Gusset edge interface length
L
 = 
 = 17.250
[in]

Gusset edge equivalent normal force
Ne
 = N -
4 M/L
 = -168.9
[kips]
AISC DG29  Fig B-1


 
Concentrated force from gusset
Pu
 = 
 = 168.9
[kips]

Column section
d
 = 12.900
[in]
tf
 = 0.990
[in]

tw
 = 0.610
[in]
k
 = 1.590
[in]

yield Fy
 = 50.0
[ksi]



Length of bearing
lb
 = Gusset/Column interface length
 = 17.250
[in]

Column web local yielding strength
Rn
 = Fy tw ( 5 k + lb )
 = 768.6
[kips]
AISC 15th  Eq J10-2
Resistance factor-LRFD
φ
 = 1.00
φ Rn
 = 
 = 768.6
[kips]

ratio
 = 0.22
 > Pu
OK
 
Column Web Shear Strength
ratio = 124.8 / 236.1
0.53
PASS
W Shape Column Shear Strength Check



W sect W12X106
d
 = 12.900
[in]
tw
 = 0.610
[in]

Fy
 = 50.0
[ksi]



Gusset to column axial force
Vu
 = from gusset interface force calc
 = 124.8
[kips]

 
Column shear strength
Rn
 = 0.6 Fy d tw
 = 236.1
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 236.1
[kips]

ratio
 = 0.53
 > Vu
OK
 
 
 
 
Seismic SCBF LC2
P1 =449.1 kips (C)
P2 =-615.9 kips (T)
ratio = 0.47
PASS

Gusset Plate - Shear Yielding
ratio = 125.8 / 388.1
0.32
PASS
Plate Shear Yielding Check



Plate size
width bp
 = 17.250
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Agv
 = bp tp
 = 12.938
[in2]

Shear force required
Vu
 = 
 = 125.8
[kips]

Plate shear yielding strength
Rn
 = 0.6 Fy Agv
 = 388.1
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 388.1
[kips]

ratio
 = 0.32
 > Vu
OK
 
Gusset Plate - Shear Rupture
ratio = 125.8 / 378.4
0.33
PASS
Plate Shear Rupture Check



Plate size
width bp
 = 17.250
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in shear
Anv
 = bp tp
 = 12.938
[in2]

Shear force in demand
Vu
 = 
 = 125.8
[kips]

Plate shear rupture strength
Rn
 = 0.6 Fu Anv
 = 504.6
[kips]
AISC 15th  Eq J4-4
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-4
φ Rn
 = 
 = 378.4
[kips]

ratio
 = 0.33
 > Vu
OK
 
 
Gusset Plate - Axial Yield
ratio = 100.2 / 582.2
0.17
PASS
Plate Tensile Yielding Check



Plate size
width bp
 = 17.250
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Ag
 = bp tp
 = 12.938
[in2]

Tensile force required
Pu
 = 
 = 100.2
[kips]

Plate tensile yielding strength
Rn
 = Fy Ag
 = 646.9
[kips]
AISC 15th  Eq J4-1
Resistance factor-LRFD
φ
 = 0.90
AISC 15th  Eq J4-1
φ Rn
 = 
 = 582.2
[kips]

ratio
 = 0.17
 > Pu
OK
 
Gusset Plate - Flexural Yield Interact
ratio =
0.12
PASS
Gusset plate
width bp
 = 17.250
[in]
thick tp
 = 0.750
[in]

yield Fy
 = 50.0
[ksi]

Shear plate - gross area
Ag
 = bp x tp
 = 12.938
[in2]

Shear plate - plastic modulus
Zp
 = ( bp x t2p ) / 4
 = 55.79
[in3]

Flexural strength available
Mc
 = φ Fy Zp     φ=0.90
 = 209.22
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 12.73
[kip-ft]

 
Axial strength available
Pc
 = from axial tensile yield check
 = 582.2
[kips]

Axial strength required
Pr
 = from gusset interface forces calc
 = 100.2
[kips]

 
Shear strength available
Vc
 = from shear yielding check
 = 388.1
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 125.8
[kips]

 
Flexural yield interaction
ratio
 = (
Vr/Vc
)2 + (
Pr/Pc
+
Mr/Mc
)2
 = 0.12
AISC 15th  Eq 10-5
 < 1.0
OK
 
Gusset Plate - Flexural Rupture Interact
ratio =
0.11
PASS
Gusset plate
width bp
 = 17.250
[in]
thick tp
 = 0.750
[in]

tensile Fu
 = 65.0
[ksi]

Net area of plate
An
 = bp x tp
 = 12.938
[in2]

Plastic modulus of net section
Znet
 = ( bp x t2p ) / 4
 = 55.79
[in3]

Flexural strength available
Mc
 = φ Fu Znet     φ=0.75
 = 226.66
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 12.73
[kip-ft]

 
Shear strength available
Vc
 = from shear rupture check
 = 378.4
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 125.8
[kips]

 
Flexural rupture interaction
ratio
 = (
Vr/Vc
)2 + (
Mr/Mc
)2
 = 0.11
AISC 15th  Eq 10-5
 < 1.0
OK
 
 
Gusset to Column Weld Strength
ratio = 7.29 / 15.59
0.47
PASS
Gusset to Column Interface - Forces
shear Vc
 = 125.8
[kips]
axial Hc
 = 100.2
[kips]   in compression
moment Mc
 = 12.73
[kip-ft]

Gusset to Column Interface - Weld Length
Gusset-column fillet weld length
Lwc
 = from user input
 = 17.250
[in]

Gusset to Column Interface - Combined Weld Stress
Weld stress from axial force
fa
 = Hc / Lwc
 = 5.809
[kip/in]
in compression
Weld stress from shear force
fv
 = Vc / Lwc
 = 7.293
[kip/in]

Weld stress from moment force
fb
 = 
M/L2 / 6
 = 3.080
[kip/in]

Weld stress combined - max
fmax
 = fv
 = 7.293
[kip/in]
AISC 15th  Eq 8-11
Weld resultant load angle
θ
 = weld only has shear component
 = 0.0
[°]

Fillet Weld Strength Calc
Fillet weld leg size
w
 = 716
[in]
load angle θ
 = 0.0
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 2   for double fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.00
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 25.982
[kip/in]
AISC 15th  Eq 8-1


Base metal - gusset plate
thickness t
 = 0.750
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - gusset plate is in shear, shear rupture as per AISC 15th  Eq J4-4 is checked
AISC 15th  J2.4
Base metal shear rupture
Rn-b
 = 0.6 Fu t
 = 29.250
[kip/in]
AISC 15th  Eq J4-4


Double fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 25.982
[kip/in]
AISC 15th  Eq 9-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 19.487
[kip/in]

 
When gusset plate is directly welded to beam or column, apply 1.25 ductility factor
to allow adequate force redistribution in the weld group
AISC 15th  Page 13-11
 
Weld strength used for design after applying ductility factor
φ Rn
 = φ Rn x ( 1/1.25 )
 = 15.589
[kip/in]

ratio
 = 0.47
 > fmax
OK
 
 
Column Web Local Yielding
ratio = 135.6 / 768.6
0.18
PASS
Gusset Edge Equivalent Normal Force


Refer to AISC DG29  Fig. B-1 for formula below to calculate gusset edge equivalent normal force
 
Gusset edge axial force
N
 = 
 = 100.2
[kips]

Gusset edge moment force
M
 = 
 = 12.73
[kip-ft]

Gusset edge interface length
L
 = 
 = 17.250
[in]

Gusset edge equivalent normal force
Ne
 = N +
4 M/L
 = 135.6
[kips]
AISC DG29  Fig B-1


 
Concentrated force from gusset
Pu
 = 
 = 135.6
[kips]

Column section
d
 = 12.900
[in]
tf
 = 0.990
[in]

tw
 = 0.610
[in]
k
 = 1.590
[in]

yield Fy
 = 50.0
[ksi]



Length of bearing
lb
 = Gusset/Column interface length
 = 17.250
[in]

Column web local yielding strength
Rn
 = Fy tw ( 5 k + lb )
 = 768.6
[kips]
AISC 15th  Eq J10-2
Resistance factor-LRFD
φ
 = 1.00
φ Rn
 = 
 = 768.6
[kips]

ratio
 = 0.18
 > Pu
OK
 
Column Web Local Crippling
ratio = 135.6 / 1007.0
0.13
PASS
Gusset Edge Equivalent Normal Force


Refer to AISC DG29  Fig. B-1 for formula below to calculate gusset edge equivalent normal force
 
Gusset edge axial force
N
 = 
 = 100.2
[kips]

Gusset edge moment force
M
 = 
 = 12.73
[kip-ft]

Gusset edge interface length
L
 = 
 = 17.250
[in]

Gusset edge equivalent normal force
Ne
 = N +
4 M/L
 = 135.6
[kips]
AISC DG29  Fig B-1


 
Concentrated force from gusset
Pu
 = 
 = 135.6
[kips]

Column section
d
 = 12.900
[in]
tf
 = 0.990
[in]

tw
 = 0.610
[in]
k
 = 1.590
[in]

yield Fy
 = 50.0
[ksi]
E
 = 29000
[ksi]



Length of bearing
lb
 = Gusset/Column interface length
 = 17.250
[in]

 
when lN  ≥ d/2 , use Eq J10-4
AISC 15th  Eq J10-4
Column web local crippling strength
Rn
 = 0.8 t2w [1+3
lb/d
(
tw/tf
)1.5 ] x
 = 1342.7
[kips]
AISC 15th  Eq J10-4
(
E Fy tf/tw
)0.5

Resistance factor-LRFD
φ
 = 0.75
AISC 15th  J10.3
φRn
 = 
 = 1007.0
[kips]

ratio
 = 0.13
 > Pu
OK
 
Column Web Shear Strength
ratio = 100.2 / 236.1
0.42
PASS
W Shape Column Shear Strength Check



W sect W12X106
d
 = 12.900
[in]
tw
 = 0.610
[in]

Fy
 = 50.0
[ksi]



Gusset to column axial force
Vu
 = from gusset interface force calc
 = 100.2
[kips]

 
Column shear strength
Rn
 = 0.6 Fy d tw
 = 236.1
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 236.1
[kips]

ratio
 = 0.42
 > Vu
OK
 
 
 
 

Top Brace - Gusset to Beam
Direct Weld Connection
Code=AISC 360-16 LRFD

Result Summary
geometries & weld limitations = PASS
limit states max ratio 
0.79
PASS
 
 
Brace Weld Limitation Checks - Gusset to Beam
PASS
Min Fillet Weld Size


Thinner part joined thickness
t
 = 
 = 0.750
[in]

Min fillet weld size allowed
wmin
 = 
 = 0.250
[in]
AISC 15th  Table J2.4
Fillet weld size provided
w
 = 
 = 0.438
[in]

 ≥ wmin
OK
Min Fillet Weld Length


Fillet weld size provided
w
 = 
 = 0.438
[in]

Min fillet weld length allowed
Lmin
 = 4 x w
 = 1.750
[in]
AISC 15th  J2.2b
Min fillet weld length
L
 = 
 = 26.000
[in]

 ≥ Lmin
OK
 
 
 
 
Seismic SCBF LC1
P1 =-559.7 kips (T)
P2 =524.4 kips (C)
ratio = 0.79
PASS

Gusset Plate - Shear Yielding
ratio = 270.9 / 585.0
0.46
PASS
Plate Shear Yielding Check



Plate size
width bp
 = 26.000
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Agv
 = bp tp
 = 19.500
[in2]

Shear force required
Vu
 = 
 = 270.9
[kips]

Plate shear yielding strength
Rn
 = 0.6 Fy Agv
 = 585.0
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 585.0
[kips]

ratio
 = 0.46
 > Vu
OK
 
Gusset Plate - Shear Rupture
ratio = 270.9 / 570.4
0.47
PASS
Plate Shear Rupture Check



Plate size
width bp
 = 26.000
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in shear
Anv
 = bp tp
 = 19.500
[in2]

Shear force in demand
Vu
 = 
 = 270.9
[kips]

Plate shear rupture strength
Rn
 = 0.6 Fu Anv
 = 760.5
[kips]
AISC 15th  Eq J4-4
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-4
φ Rn
 = 
 = 570.4
[kips]

ratio
 = 0.47
 > Vu
OK
 
 
Gusset Plate - Axial Tensile Yield
ratio = 239.0 / 877.5
0.27
PASS
Plate Tensile Yielding Check



Plate size
width bp
 = 26.000
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Ag
 = bp tp
 = 19.500
[in2]

Tensile force required
Pu
 = 
 = 239.0
[kips]

Plate tensile yielding strength
Rn
 = Fy Ag
 = 975.0
[kips]
AISC 15th  Eq J4-1
Resistance factor-LRFD
φ
 = 0.90
AISC 15th  Eq J4-1
φ Rn
 = 
 = 877.5
[kips]

ratio
 = 0.27
 > Pu
OK
 
Gusset Plate - Axial Tensile Rupture
ratio = 239.0 / 950.6
0.25
PASS
Plate Tensile Rupture Check



Plate size
width bp
 = 26.000
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in tension
Ant
 = bp tp
 = 19.500
[in2]

Tensile force required
Pu
 = 
 = 239.0
[kips]

Plate tensile rupture strength
Rn
 = Fu Ant
 = 1267.5
[kips]
AISC 15th  Eq J4-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-2
φ Rn
 = 
 = 950.6
[kips]
AISC 15th  Eq J4-2
ratio
 = 0.25
 > Pu
OK
 
 
Gusset Plate - Flexural Yield Interact
ratio =
0.29
PASS
Gusset plate
width bp
 = 26.000
[in]
thick tp
 = 0.750
[in]

yield Fy
 = 50.0
[ksi]

Shear plate - gross area
Ag
 = bp x tp
 = 19.500
[in2]

Shear plate - plastic modulus
Zp
 = ( bp x t2p ) / 4
 = 126.75
[in3]

Flexural strength available
Mc
 = φ Fy Zp     φ=0.90
 = 475.31
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 0.00
[kip-ft]

 
Axial strength available
Pc
 = from axial tensile yield check
 = 877.5
[kips]

Axial strength required
Pr
 = from gusset interface forces calc
 = -239.0
[kips]

 
Shear strength available
Vc
 = from shear yielding check
 = 585.0
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 270.9
[kips]

 
Flexural yield interaction
ratio
 = (
Vr/Vc
)2 + (
Pr/Pc
+
Mr/Mc
)2
 = 0.29
AISC 15th  Eq 10-5
 < 1.0
OK
 
Gusset Plate - Flexural Rupture Interact
ratio =
0.29
PASS
Gusset plate
width bp
 = 26.000
[in]
thick tp
 = 0.750
[in]

tensile Fu
 = 65.0
[ksi]

Net area of plate
An
 = bp x tp
 = 19.500
[in2]

Plastic modulus of net section
Znet
 = ( bp x t2p ) / 4
 = 126.75
[in3]

Flexural strength available
Mc
 = φ Fu Znet     φ=0.75
 = 514.92
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 0.00
[kip-ft]

 
Axial strength available
Pc
 = from axial tensile rupture check
 = 950.6
[kips]

Axial strength required
Pr
 = from gusset interface forces calc
 = -239.0
[kips]

 
Shear strength available
Vc
 = from shear rupture check
 = 570.4
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 270.9
[kips]

 
Flexural rupture interaction
ratio
 = (
Vr/Vc
)2 + (
Pr/Pc
+
Mr/Mc
)2
 = 0.29
AISC 15th  Eq 10-5
 < 1.0
OK
 
 
Gusset to Beam Weld Strength
ratio = 13.89 / 17.55
0.79
PASS
Gusset to Beam Interface - Forces
shear Hb
 = 270.9
[kips]
axial Vb
 = -239.0
[kips]   in tension
moment Mb
 = 0.00
[kip-ft]

 
Gusset-beam fillet weld length
Lw
 = 
 = 26.000
[in]

Gusset to Beam Interface - Combined Weld Stress
Weld stress from axial force
fa
 = Vb / Lwb
 = -9.192
[kip/in]
in tension
Weld stress from shear force
fv
 = Hb / Lwb
 = 10.419
[kip/in]

Weld stress from moment force
fb
 = 
M/L2 / 6
 = 0.000
[kip/in]

Weld stress combined - max
fmax
 = [ (fa - fb )2 + f2v ]0.5
 = 13.895
[kip/in]
AISC 15th  Eq 8-11
Weld resultant load angle
θ
 = tan-1 [( fb - fa ) / fv ]
 = 41.4
[°]

Fillet Weld Strength Calc
Fillet weld leg size
w
 = 716
[in]
load angle θ
 = 41.4
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 2   for double fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.27
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 32.973
[kip/in]
AISC 15th  Eq 8-1


Base metal - gusset plate
thickness t
 = 0.750
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - gusset plate is in shear, shear rupture as per AISC 15th  Eq J4-4 is checked
AISC 15th  J2.4
Base metal shear rupture
Rn-b
 = 0.6 Fu t
 = 29.250
[kip/in]
AISC 15th  Eq J4-4


Double fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 29.250
[kip/in]
AISC 15th  Eq 9-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 21.938
[kip/in]

 
When gusset plate is directly welded to beam or column, apply 1.25 ductility factor
to allow adequate force redistribution in the weld group
AISC 15th  Page 13-11
 
Weld strength used for design after applying ductility factor
φ Rn
 = φ Rn x ( 1/1.25 )
 = 17.550
[kip/in]

ratio
 = 0.79
 > fmax
OK
 
 
Beam Web Local Yielding
ratio = 239.0 / 974.2
0.25
PASS
 
Concentrated force from gusset
Pu
 = 
 = 239.0
[kips]

Beam section
d
 = 24.700
[in]
tf
 = 1.090
[in]

tw
 = 0.650
[in]
k
 = 1.590
[in]

yield Fy
 = 50.0
[ksi]



Length of bearing
lb
 = Gusset/Beam interface length
 = 26.000
[in]

Gusset plate corner clip
clip
 = from user input
 = 1.000
[in]

Distance from normal force applied point to member end
lN
 = 0.5 lb + clip
 = 14.000
[in]

 
when lN  ≤ d , use AISC 15th  Eq J10-3
AISC 15th  Eq J10-3
 
Beam web local yielding strength
Rn
 = Fy tw ( 2.5 k + lb )
 = 974.2
[kips]
AISC 15th  Eq J10-3
Resistance factor-LRFD
φ
 = 1.00
φ Rn
 = 
 = 974.2
[kips]

ratio
 = 0.25
 > Pu
OK
 
 
 
Seismic SCBF LC2
P1 =449.1 kips (C)
P2 =-615.9 kips (T)
ratio = 0.54
PASS

Gusset Plate - Shear Yielding
ratio = 217.4 / 585.0
0.37
PASS
Plate Shear Yielding Check



Plate size
width bp
 = 26.000
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Agv
 = bp tp
 = 19.500
[in2]

Shear force required
Vu
 = 
 = 217.4
[kips]

Plate shear yielding strength
Rn
 = 0.6 Fy Agv
 = 585.0
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 585.0
[kips]

ratio
 = 0.37
 > Vu
OK
 
Gusset Plate - Shear Rupture
ratio = 217.4 / 570.4
0.38
PASS
Plate Shear Rupture Check



Plate size
width bp
 = 26.000
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in shear
Anv
 = bp tp
 = 19.500
[in2]

Shear force in demand
Vu
 = 
 = 217.4
[kips]

Plate shear rupture strength
Rn
 = 0.6 Fu Anv
 = 760.5
[kips]
AISC 15th  Eq J4-4
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-4
φ Rn
 = 
 = 570.4
[kips]

ratio
 = 0.38
 > Vu
OK
 
 
Gusset Plate - Axial Yield
ratio = 191.8 / 877.5
0.22
PASS
Plate Tensile Yielding Check



Plate size
width bp
 = 26.000
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Ag
 = bp tp
 = 19.500
[in2]

Tensile force required
Pu
 = 
 = 191.8
[kips]

Plate tensile yielding strength
Rn
 = Fy Ag
 = 975.0
[kips]
AISC 15th  Eq J4-1
Resistance factor-LRFD
φ
 = 0.90
AISC 15th  Eq J4-1
φ Rn
 = 
 = 877.5
[kips]

ratio
 = 0.22
 > Pu
OK
 
 
Gusset Plate - Flexural Yield Interact
ratio =
0.19
PASS
Gusset plate
width bp
 = 26.000
[in]
thick tp
 = 0.750
[in]

yield Fy
 = 50.0
[ksi]

Shear plate - gross area
Ag
 = bp x tp
 = 19.500
[in2]

Shear plate - plastic modulus
Zp
 = ( bp x t2p ) / 4
 = 126.75
[in3]

Flexural strength available
Mc
 = φ Fy Zp     φ=0.90
 = 475.31
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 0.00
[kip-ft]

 
Axial strength available
Pc
 = from axial tensile yield check
 = 877.5
[kips]

Axial strength required
Pr
 = from gusset interface forces calc
 = 191.8
[kips]

 
Shear strength available
Vc
 = from shear yielding check
 = 585.0
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 217.4
[kips]

 
Flexural yield interaction
ratio
 = (
Vr/Vc
)2 + (
Pr/Pc
+
Mr/Mc
)2
 = 0.19
AISC 15th  Eq 10-5
 < 1.0
OK
 
Gusset Plate - Flexural Rupture Interact
ratio =
0.15
PASS
Gusset plate
width bp
 = 26.000
[in]
thick tp
 = 0.750
[in]

tensile Fu
 = 65.0
[ksi]

Net area of plate
An
 = bp x tp
 = 19.500
[in2]

Plastic modulus of net section
Znet
 = ( bp x t2p ) / 4
 = 126.75
[in3]

Flexural strength available
Mc
 = φ Fu Znet     φ=0.75
 = 514.92
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 0.00
[kip-ft]

 
Shear strength available
Vc
 = from shear rupture check
 = 570.4
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 217.4
[kips]

 
Flexural rupture interaction
ratio
 = (
Vr/Vc
)2 + (
Mr/Mc
)2
 = 0.15
AISC 15th  Eq 10-5
 < 1.0
OK
 
 
Gusset to Beam Weld Strength
ratio = 8.36 / 15.59
0.54
PASS
Gusset to Beam Interface - Forces
shear Hb
 = 217.4
[kips]
axial Vb
 = 191.8
[kips]   in compression
moment Mb
 = 0.00
[kip-ft]

 
Gusset-beam fillet weld length
Lw
 = 
 = 26.000
[in]

Gusset to Beam Interface - Combined Weld Stress
Weld stress from axial force
fa
 = Vb / Lwb
 = 0.000
[kip/in]
in compression
Weld stress from shear force
fv
 = Hb / Lwb
 = 8.362
[kip/in]

Weld stress from moment force
fb
 = 
M/L2 / 6
 = 0.000
[kip/in]

Weld stress combined - max
fmax
 = fv
 = 8.362
[kip/in]
AISC 15th  Eq 8-11
Weld resultant load angle
θ
 = weld only has shear component
 = 0.0
[°]

Fillet Weld Strength Calc
Fillet weld leg size
w
 = 716
[in]
load angle θ
 = 0.0
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 2   for double fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.00
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 25.982
[kip/in]
AISC 15th  Eq 8-1


Base metal - gusset plate
thickness t
 = 0.750
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - gusset plate is in shear, shear rupture as per AISC 15th  Eq J4-4 is checked
AISC 15th  J2.4
Base metal shear rupture
Rn-b
 = 0.6 Fu t
 = 29.250
[kip/in]
AISC 15th  Eq J4-4


Double fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 25.982
[kip/in]
AISC 15th  Eq 9-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 19.487
[kip/in]

 
When gusset plate is directly welded to beam or column, apply 1.25 ductility factor
to allow adequate force redistribution in the weld group
AISC 15th  Page 13-11
 
Weld strength used for design after applying ductility factor
φ Rn
 = φ Rn x ( 1/1.25 )
 = 15.589
[kip/in]

ratio
 = 0.54
 > fmax
OK
 
 
Beam Web Local Yielding
ratio = 191.8 / 974.2
0.20
PASS
 
Concentrated force from gusset
Pu
 = 
 = 191.8
[kips]

Beam section
d
 = 24.700
[in]
tf
 = 1.090
[in]

tw
 = 0.650
[in]
k
 = 1.590
[in]

yield Fy
 = 50.0
[ksi]



Length of bearing
lb
 = Gusset/Beam interface length
 = 26.000
[in]

Gusset plate corner clip
clip
 = from user input
 = 1.000
[in]

Distance from normal force applied point to member end
lN
 = 0.5 lb + clip
 = 14.000
[in]

 
when lN  ≤ d , use AISC 15th  Eq J10-3
AISC 15th  Eq J10-3
 
Beam web local yielding strength
Rn
 = Fy tw ( 2.5 k + lb )
 = 974.2
[kips]
AISC 15th  Eq J10-3
Resistance factor-LRFD
φ
 = 1.00
φ Rn
 = 
 = 974.2
[kips]

ratio
 = 0.20
 > Pu
OK
 
Beam Web Local Crippling
ratio = 191.8 / 970.1
0.20
PASS
 
Concentrated force from gusset
Pu
 = 
 = 191.8
[kips]

Beam section
d
 = 24.700
[in]
tf
 = 1.090
[in]

tw
 = 0.650
[in]
k
 = 1.590
[in]

yield Fy
 = 50.0
[ksi]
E
 = 29000
[ksi]



Length of bearing
lb
 = Gusset/Beam interface length
 = 26.000
[in]

Gusset plate corner clip
clip
 = from user input
 = 1.000
[in]

Distance from normal force applied point to member end
lN
 = 0.5 lb + clip
 = 14.000
[in]

 
when lN  ≥ d/2 , use Eq J10-4
AISC 15th  Eq J10-4
Beam web local crippling strength
Rn
 = 0.8 t2w [1+3
lb/d
(
tw/tf
)1.5 ] x
 = 1293.5
[kips]
AISC 15th  Eq J10-4
(
E Fy tf/tw
)0.5

Resistance factor-LRFD
φ
 = 0.75
AISC 15th  J10.3
φRn
 = 
 = 970.1
[kips]

ratio
 = 0.20
 > Pu
OK
 
 
 
 

Bot Brace - Brace to Gusset
Sect=HSS 7.500 x 0.500
P1 =524.4 kips (C)
P2 =-615.9 kips (T)
Code=AISC 360-16 LRFD

Result Summary
geometries & weld limitations = PASS
limit states max ratio 
1.01
FAIL
 
 
Seismic SCBF Brace Highly Ductile Section Check
PASS
HSS Section Limiting Width-to-Thickness Ratio Check



 
Check HSS section limiting width-to-thickness ratio for HSS wall in compression as Highly Ductile section
per AISC Seismic Design Manual 3rd Ed Table 1-D
AISC SDM 3rd  Table 1-D
 
CHS sect HSS7.500X0.500
D
 = 7.500
[in]
t
 = 0.465
[in]

HSS sect HSS7.500X0.500
Fy
 = A500 Gr.C Round
 = 46.0
[ksi]

E
 = 29000
[ksi]

 
Ratio of expected Fy to specified min Fy
Ry
 = 1.30
AISC 341-16  Table A3.1
 


CHS width-to-thickness ratio limit
λhd
 = 0.053
E/Ry Fy
 = 25.70
AISC SDM 3rd  Table 1-D
CHS width-to-thickness ratio actual
D/t
 = D/t
 = 16.13

 ≤ λhd
OK
 
Brace Slot Effective Net Area Check
PASS
HSS With Reinforcing Plates Effective Net Area



CHS sect HSS7.500X0.500
D
 = 7.500
[in]
t
 = 0.465
[in]

Ag
 = 10.300
[in2]



Gusset plate thickness
tgp
 = from user input
 = 0.750
[in]

HSS cut slot width
w
 = tgp + 1/8"
 = 0.875
[in]

HSS brace net area
Anb
 = Ag - 2 w t
 = 9.486
[in2]



Reinforcing plate
wr
 = 1.500
[in]
tr
 = 1.500
[in]

Reinforcing plate area
Ar
 = wr x tr
 = 2.250
[in2]



CHS 1/2 net area A1 = 0.5Anb
A1
 = 4.743
[in2]
r1
 = 2.239
[in]

Reinforce plate
A2
 = 2.250
[in2]
r2
 = 4.500
[in]

 
Dist to centroid of comb sect
x
 = 
A1 r1 + A2 r2/A1 + A2
 = 2.967
[in]

Length of connection
L
 = 
 = 28.000
[in]

Shear lag factor
U
 = 1 - x / L
 = 0.894
AISC 15th  Table D3.1


Total net area
An
 = Anb + 2 x Ar
 = 13.986
[in2]

Total effective net area
Ae
 = U An
 = 12.504
[in2]



 
The brace effective net area shall not be less than the brace gross area
AISC 341-16 F2.5b (3)
 
HSS sect HSS7.500X0.500
Ag
 = brace gross area
 = 10.300
[in2]

Total brace effective net area
Ae
 = U An
 = 12.504
[in2]

 ≥ Ag
OK
AISC 341-16 F2.5b (3)


 
The specified minimum yield strength of the reinforce plate shall be at least the specified
minimum yield strength of the brace
AISC 341-16 F2.5b (3)(i)
 
HSS sect HSS7.500X0.500
Fy
 = A500 Gr.C Round
 = 46.0
[ksi]

Reinforce plate
Fyp
 = A992
 = 50.0
[ksi]

 ≥ Fy
OK
AISC 341-16 F2.5b (3)(i)
 
Brace Slot to Gusset Plate Weld Limitation Check
PASS
Min Fillet Weld Size


Thinner part joined thickness
t
 = 
 = 0.465
[in]

Min fillet weld size allowed
wmin
 = 
 = 0.188
[in]
AISC 15th  Table J2.4
Fillet weld size provided
w
 = 
 = 0.250
[in]

 ≥ wmin
OK
Min Fillet Weld Length


Fillet weld size provided
w
 = 
 = 0.250
[in]

Min fillet weld length allowed
Lmin
 = 4 x w
 = 1.000
[in]
AISC 15th  J2.2b
Min fillet weld length
L
 = 
 = 28.000
[in]

 ≥ Lmin
OK
 
 
 
 
Seismic SCBF LC1
Sect=HSS 7.500 x 0.500
P =524.4 kips (C)
ratio = 0.91
PASS

Gusset Plate - Compression (Whitmore)
ratio = 524.4 / 871.7
0.60
PASS
Plate Compression Check



Plate size
width bp
 = 30.663
[in]
thickness tp
 = 0.750
[in]

Fy
 = 50.0
[ksi]
E
 = 29000
[ksi]

Plate gross area in compression
Ag
 = bp tp
 = 22.997
[in2]



Plate radius of gyration
r
 = tp / 12
 = 0.217
[in]

Plate effective length factor
K
 = 
 = 0.60
Plate unbraced length
Lu
 = 
 = 17.481
[in]

Plate slenderness
KL/r
 = 0.60 x Lu  / r
 = 48.44



when  
KL/r
  >  25 , use Chapter E
AISC 15th  J4.4 (b)
Elastic buckling stress
Fe
 = 
π2 E/( KL/r )2
 = 121.96
[ksi]
AISC 15th  Eq E3-4
when  
KL/r
  ≤ 4.71 (
E/Fy
) 0.5 = 113.43
AISC 15th  E3 (a)
Critical stress
Fcr
 = 0.658 ( Fy / Fe )   Fy
 = 42.12
[ksi]
AISC 15th  Eq E3-2


Plate compression required
Pu
 = Pc = 524.4
 = 524.4
[kips]

Plate compression provided
Rn
 = Fcr x Ag
 = 968.5
[kips]
AISC 15th  Eq E3-1
Resistance factor-LRFD
φ
 = 0.90
AISC 15th  E1
φ Rn
 = 
 = 871.7
[kips]

ratio
 = 0.60
 > Pu
OK
 
 
Brace Slot to Gusset Plate Weld Strength
ratio = 524.4 / 608.6
0.86
PASS
 
Fillet Weld Strength Check



Fillet weld leg size
w
 = 14
[in]
load angle θ
 = 0.0
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 2   for double fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.00
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 14.847
[kip/in]
AISC 15th  Eq 8-1


Base metal - brace
thickness t
 = 0.750
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - brace is in shear, shear rupture as per AISC 15th  Eq J4-4 is checked
AISC 15th  J2.4
Base metal shear rupture
Rn-b
 = 0.6 Fu t
 = 29.250
[kip/in]
AISC 15th  Eq J4-4


Double fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 14.847
[kip/in]
AISC 15th  Eq 9-2
 
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 11.135
[kip/in]



Shear resistance required
Vu
 = 
 = 524.4
[kips]



Fillet weld leg size
w
 = 14
[in]
max L
 = 28.000
[in]

when L/w = 112.0 >100 , weld length reduction applied
AISC 15th  J2.2b
Weld length reduction factor
β
 = 1.2 - 0.002 (L/w) ≤ 1.0
 = 0.98
AISC 15th  Eq J2-1
Weld length used for design
L
 = β x L
 = 54.656
[in]



Fillet weld length - double fillet
L
 = 
 = 54.656
[in]

Shear resistance provided
φ Fn
 = φ Rn x L
 = 608.6
[kips]

ratio
 = 0.86
 > Vu
OK
 
Reinforce Plate to Brace Wall Weld Strength
ratio = 123.8 / 136.4
0.91
PASS
Reinforcing plate
wr
 = 1.500
[in]
tr
 = 1.500
[in]

Fy
 = 50.0
[ksi]

 
Ratio of expected Fy to specified min Fy
Ry
 = 1.10
AISC 341-16  Table A3.1
 
Reinforcing plate area
Ar
 = wr x tr
 = 2.250
[in2]

 
Required strength of weld
Pu
 = Ry Fy Ar
 = 123.8
[kips]

 
Reinforce Plate to Brace Wall Fillet Weld Length
Longitudinal weld length
LL
 = reinforce plate length
 = 11.500
[in]

Transverse weld length
LT
 = reinforce plate width
 = 1.500
[in]

 
Total weld length - single fillet weld
L1
 = 2 x LL + LT
 = 24.500
[in]
AISC 15th  Eq J2-10a
L2
 = 0.85 x 2 x LL + 1.5 x LT
 = 21.800
[in]
AISC 15th  Eq J2-10b
L
 = max ( L1 , L2 )
 = 24.500
[in]
AISC 15th  J2.4 (c)
 
Fillet Weld Strength Check



Fillet weld leg size
w
 = 14
[in]
load angle θ
 = 0.0
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 1   for single fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.00
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 7.424
[kip/in]
AISC 15th  Eq 8-1


Base metal - reinforce plate
thickness t
 = 1.500
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - reinforce plate is in shear, shear rupture as per AISC 15th  Eq J4-4 is checked
AISC 15th  J2.4
Base metal shear rupture
Rn-b
 = 0.6 Fu t
 = 58.500
[kip/in]
AISC 15th  Eq J4-4


Single fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 7.424
[kip/in]
AISC 15th  Eq 9-2
 
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 5.568
[kip/in]



Shear resistance required
Pu
 = 
 = 123.8
[kips]

Fillet weld length - single fillet
L
 = 
 = 24.500
[in]

Shear resistance provided
φ Fn
 = φ Rn x L
 = 136.4
[kips]

ratio
 = 0.91
 > Pu
OK
 
 
 
Seismic SCBF LC2
Sect=HSS 7.500 x 0.500
P =-615.9 kips (T)
ratio = 1.01
FAIL

 
HSS Brace Wall - Gusset PL - Shear Yield
ratio = 615.9 / 1868.6
0.33
PASS
HSS Brace Wall-Gusset Plate Shear Yielding



HSS sect HSS7.500X0.500 wall thick
t
 = 0.465
[in]
Fy
 = 46.0
[ksi]

HSS brace wall-gusset overlap length
L
 = 28.000
[in]

 
Ratio of expected Fy to specified min Fy
Ry
 = 1.30
AISC 341-16  Table A3.1


Beam axial load
Pu
 = from seismic load calc
 = 615.9
[kips]

 
HSS brace wall-gusset shear yielding
Rn
 = 0.6 Ry Fy t L x 4 walls
 = 1868.6
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 1868.6
[kips]

ratio
 = 0.33
 > Pu
OK
 
HSS Brace Wall - Gusset PL - Shear Rupture
ratio = 615.9 / 1743.6
0.35
PASS
HSS Brace Wall-Gusset Plate Shear Yielding



HSS sect HSS7.500X0.500 wall thick
t
 = 0.465
[in]
Fu
 = 62.0
[ksi]

HSS brace wall-gusset overlap length
L
 = 28.000
[in]

 
Ratio of expected Fu to specified min Fu
Rt
 = 1.20
AISC 341-16  Table A3.1


Beam axial load
Pu
 = from seismic load calc
 = 615.9
[kips]

 
HSS brace wall-gusset shear rupture
Rn
 = 0.6 Rt Fu t L x 4 walls
 = 2324.9
[kips]
AISC 15th  Eq J4-4
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-4
φ Rn
 = 
 = 1743.6
[kips]

ratio
 = 0.35
 > Pu
OK
 
 
Gusset Plate - Block Shear Rupture
ratio = 615.9 / 1219.2
0.51
PASS
Plate Block Shear - Center Strip



Plate thickness
tp
 = 0.750
[in]

Plate strength
Fy
 = 50.0
[ksi]
Fu
 = 65.0
[ksi]

C shape weld group size
width b
 = 28.000
[in]
depth d
 = 7.500
[in]

 


Gross area subject to shear
Agv
 = b tp x 2
 = 42.000
[in2]

Net area subject to shear
Anv
 = Agvb
 = 42.000
[in2]

Net area subject to tension
Ant
 = d tp
 = 5.625
[in2]



Block shear strength required
Vu
 = 
 = 615.9
[kips]

Uniform tension stress factor
Ubs
 = 1.00
AISC 15th  Fig C-J4.2
Bolt shear resistance provided
Rn
 = min (0.6Fu Anv , 0.6Fy Agv ) +
 = 1625.6
[kips]
AISC 15th  Eq J4-5
Ubs Fu Ant

Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-5
φ Rn
 = 
 = 1219.2
[kips]

ratio
 = 0.51
 > Vu
OK
 
 
Gusset Plate - Tensile Yield (Whitmore)
ratio = 615.9 / 1034.9
0.60
PASS
Plate Tensile Yielding Check



Plate size
width bp
 = 30.663
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Ag
 = bp tp
 = 22.997
[in2]

Tensile force required
Pu
 = 
 = 615.9
[kips]

Plate tensile yielding strength
Rn
 = Fy Ag
 = 1149.9
[kips]
AISC 15th  Eq J4-1
Resistance factor-LRFD
φ
 = 0.90
AISC 15th  Eq J4-1
φ Rn
 = 
 = 1034.9
[kips]

ratio
 = 0.60
 > Pu
OK
 
Gusset Plate - Tensile Rupture (Whitmore)
ratio = 615.9 / 1121.1
0.55
PASS
Plate Tensile Rupture Check



Plate size
width bp
 = 30.663
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in tension
Ant
 = bp tp
 = 22.997
[in2]

Tensile force required
Pu
 = 
 = 615.9
[kips]

Plate tensile rupture strength
Rn
 = Fu Ant
 = 1494.8
[kips]
AISC 15th  Eq J4-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-2
φ Rn
 = 
 = 1121.1
[kips]
AISC 15th  Eq J4-2
ratio
 = 0.55
 > Pu
OK
 
 
Brace Slot to Gusset Plate Weld Strength
ratio = 615.9 / 608.6
1.01
FAIL
 
Fillet Weld Strength Check



Fillet weld leg size
w
 = 14
[in]
load angle θ
 = 0.0
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 2   for double fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.00
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 14.847
[kip/in]
AISC 15th  Eq 8-1


Base metal - brace
thickness t
 = 0.750
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - brace is in shear, shear rupture as per AISC 15th  Eq J4-4 is checked
AISC 15th  J2.4
Base metal shear rupture
Rn-b
 = 0.6 Fu t
 = 29.250
[kip/in]
AISC 15th  Eq J4-4


Double fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 14.847
[kip/in]
AISC 15th  Eq 9-2
 
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 11.135
[kip/in]



Shear resistance required
Vu
 = 
 = 615.9
[kips]



Fillet weld leg size
w
 = 14
[in]
max L
 = 28.000
[in]

when L/w = 112.0 >100 , weld length reduction applied
AISC 15th  J2.2b
Weld length reduction factor
β
 = 1.2 - 0.002 (L/w) ≤ 1.0
 = 0.98
AISC 15th  Eq J2-1
Weld length used for design
L
 = β x L
 = 54.656
[in]



Fillet weld length - double fillet
L
 = 
 = 54.656
[in]

Shear resistance provided
φ Fn
 = φ Rn x L
 = 608.6
[kips]

ratio
 = 1.01
 < Vu
NG
 
Reinforce Plate to Brace Wall Weld Strength
ratio = 123.8 / 136.4
0.91
PASS
Reinforcing plate
wr
 = 1.500
[in]
tr
 = 1.500
[in]

Fy
 = 50.0
[ksi]

 
Ratio of expected Fy to specified min Fy
Ry
 = 1.10
AISC 341-16  Table A3.1
 
Reinforcing plate area
Ar
 = wr x tr
 = 2.250
[in2]

 
Required strength of weld
Pu
 = Ry Fy Ar
 = 123.8
[kips]

 
Reinforce Plate to Brace Wall Fillet Weld Length
Longitudinal weld length
LL
 = reinforce plate length
 = 11.500
[in]

Transverse weld length
LT
 = reinforce plate width
 = 1.500
[in]

 
Total weld length - single fillet weld
L1
 = 2 x LL + LT
 = 24.500
[in]
AISC 15th  Eq J2-10a
L2
 = 0.85 x 2 x LL + 1.5 x LT
 = 21.800
[in]
AISC 15th  Eq J2-10b
L
 = max ( L1 , L2 )
 = 24.500
[in]
AISC 15th  J2.4 (c)
 
Fillet Weld Strength Check



Fillet weld leg size
w
 = 14
[in]
load angle θ
 = 0.0
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 1   for single fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.00
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 7.424
[kip/in]
AISC 15th  Eq 8-1


Base metal - reinforce plate
thickness t
 = 1.500
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - reinforce plate is in shear, shear rupture as per AISC 15th  Eq J4-4 is checked
AISC 15th  J2.4
Base metal shear rupture
Rn-b
 = 0.6 Fu t
 = 58.500
[kip/in]
AISC 15th  Eq J4-4


Single fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 7.424
[kip/in]
AISC 15th  Eq 9-2
 
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 5.568
[kip/in]



Shear resistance required
Pu
 = 
 = 123.8
[kips]

Fillet weld length - single fillet
L
 = 
 = 24.500
[in]

Shear resistance provided
φ Fn
 = φ Rn x L
 = 136.4
[kips]

ratio
 = 0.91
 > Pu
OK
 
 
 

Bot Brace - Gusset to Column
Direct Weld Connection
Code=AISC 360-16 LRFD

Result Summary
geometries & weld limitations = PASS
limit states max ratio 
0.98
PASS
 
 
Weld Limitation Checks - Gusset to Column
PASS
Min Fillet Weld Size


Thinner part joined thickness
t
 = 
 = 0.750
[in]

Min fillet weld size allowed
wmin
 = 
 = 0.250
[in]
AISC 15th  Table J2.4
Fillet weld size provided
w
 = 
 = 0.313
[in]

 ≥ wmin
OK
Min Fillet Weld Length


Fillet weld size provided
w
 = 
 = 0.313
[in]

Min fillet weld length allowed
Lmin
 = 4 x w
 = 1.250
[in]
AISC 15th  J2.2b
Min fillet weld length
L
 = 
 = 18.750
[in]

 ≥ Lmin
OK
 
 
 
 
Seismic SCBF LC1
P1 =-559.7 kips (T)
P2 =524.4 kips (C)
ratio = 0.74
PASS

Gusset Plate - Shear Yielding
ratio = 154.8 / 421.9
0.37
PASS
Plate Shear Yielding Check



Plate size
width bp
 = 18.750
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Agv
 = bp tp
 = 14.063
[in2]

Shear force required
Vu
 = 
 = 154.8
[kips]

Plate shear yielding strength
Rn
 = 0.6 Fy Agv
 = 421.9
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 421.9
[kips]

ratio
 = 0.37
 > Vu
OK
 
Gusset Plate - Shear Rupture
ratio = 154.8 / 411.3
0.38
PASS
Plate Shear Rupture Check



Plate size
width bp
 = 18.750
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in shear
Anv
 = bp tp
 = 14.063
[in2]

Shear force in demand
Vu
 = 
 = 154.8
[kips]

Plate shear rupture strength
Rn
 = 0.6 Fu Anv
 = 548.4
[kips]
AISC 15th  Eq J4-4
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-4
φ Rn
 = 
 = 411.3
[kips]

ratio
 = 0.38
 > Vu
OK
 
 
Gusset Plate - Axial Tensile Yield
ratio = 112.8 / 632.8
0.18
PASS
Plate Tensile Yielding Check



Plate size
width bp
 = 18.750
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Ag
 = bp tp
 = 14.063
[in2]

Tensile force required
Pu
 = 
 = 112.8
[kips]

Plate tensile yielding strength
Rn
 = Fy Ag
 = 703.1
[kips]
AISC 15th  Eq J4-1
Resistance factor-LRFD
φ
 = 0.90
AISC 15th  Eq J4-1
φ Rn
 = 
 = 632.8
[kips]

ratio
 = 0.18
 > Pu
OK
 
Gusset Plate - Axial Tensile Rupture
ratio = 112.8 / 685.5
0.16
PASS
Plate Tensile Rupture Check



Plate size
width bp
 = 18.750
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in tension
Ant
 = bp tp
 = 14.063
[in2]

Tensile force required
Pu
 = 
 = 112.8
[kips]

Plate tensile rupture strength
Rn
 = Fu Ant
 = 914.1
[kips]
AISC 15th  Eq J4-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-2
φ Rn
 = 
 = 685.5
[kips]
AISC 15th  Eq J4-2
ratio
 = 0.16
 > Pu
OK
 
 
Gusset Plate - Flexural Yield Interact
ratio =
0.15
PASS
Gusset plate
width bp
 = 18.750
[in]
thick tp
 = 0.750
[in]

yield Fy
 = 50.0
[ksi]

Shear plate - gross area
Ag
 = bp x tp
 = 14.063
[in2]

Shear plate - plastic modulus
Zp
 = ( bp x t2p ) / 4
 = 65.92
[in3]

Flexural strength available
Mc
 = φ Fy Zp     φ=0.90
 = 247.19
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 14.34
[kip-ft]

 
Axial strength available
Pc
 = from axial tensile yield check
 = 632.8
[kips]

Axial strength required
Pr
 = from gusset interface forces calc
 = 112.8
[kips]

 
Shear strength available
Vc
 = from shear yielding check
 = 421.9
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 154.8
[kips]

 
Flexural yield interaction
ratio
 = (
Vr/Vc
)2 + (
Pr/Pc
+
Mr/Mc
)2
 = 0.15
AISC 15th  Eq 10-5
 < 1.0
OK
 
Gusset Plate - Flexural Rupture Interact
ratio =
0.15
PASS
Gusset plate
width bp
 = 18.750
[in]
thick tp
 = 0.750
[in]

tensile Fu
 = 65.0
[ksi]

Net area of plate
An
 = bp x tp
 = 14.063
[in2]

Plastic modulus of net section
Znet
 = ( bp x t2p ) / 4
 = 65.92
[in3]

Flexural strength available
Mc
 = φ Fu Znet     φ=0.75
 = 267.79
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 14.34
[kip-ft]

 
Axial strength available
Pc
 = from axial tensile rupture check
 = 685.5
[kips]

Axial strength required
Pr
 = from gusset interface forces calc
 = 112.8
[kips]

 
Shear strength available
Vc
 = from shear rupture check
 = 411.3
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 154.8
[kips]

 
Flexural rupture interaction
ratio
 = (
Vr/Vc
)2 + (
Pr/Pc
+
Mr/Mc
)2
 = 0.15
AISC 15th  Eq 10-5
 < 1.0
OK
 
 
Gusset to Column Weld Strength
ratio = 8.26 / 11.14
0.74
PASS
Gusset to Column Interface - Forces
shear Vc
 = 154.8
[kips]
axial Hc
 = 112.8
[kips]   in compression
moment Mc
 = 14.34
[kip-ft]

Gusset to Column Interface - Weld Length
Gusset-column fillet weld length
Lwc
 = from user input
 = 18.750
[in]

Gusset to Column Interface - Combined Weld Stress
Weld stress from axial force
fa
 = Hc / Lwc
 = 6.016
[kip/in]
in compression
Weld stress from shear force
fv
 = Vc / Lwc
 = 8.256
[kip/in]

Weld stress from moment force
fb
 = 
M/L2 / 6
 = 2.937
[kip/in]

Weld stress combined - max
fmax
 = fv
 = 8.256
[kip/in]
AISC 15th  Eq 8-11
Weld resultant load angle
θ
 = weld only has shear component
 = 0.0
[°]

Fillet Weld Strength Calc
Fillet weld leg size
w
 = 516
[in]
load angle θ
 = 0.0
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 2   for double fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.00
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 18.559
[kip/in]
AISC 15th  Eq 8-1


Base metal - gusset plate
thickness t
 = 0.750
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - gusset plate is in shear, shear rupture as per AISC 15th  Eq J4-4 is checked
AISC 15th  J2.4
Base metal shear rupture
Rn-b
 = 0.6 Fu t
 = 29.250
[kip/in]
AISC 15th  Eq J4-4


Double fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 18.559
[kip/in]
AISC 15th  Eq 9-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 13.919
[kip/in]

 
When gusset plate is directly welded to beam or column, apply 1.25 ductility factor
to allow adequate force redistribution in the weld group
AISC 15th  Page 13-11
 
Weld strength used for design after applying ductility factor
φ Rn
 = φ Rn x ( 1/1.25 )
 = 11.135
[kip/in]

ratio
 = 0.74
 > fmax
OK
 
 
Column Web Local Yielding
ratio = 149.5 / 814.4
0.18
PASS
Gusset Edge Equivalent Normal Force


Refer to AISC DG29  Fig. B-1 for formula below to calculate gusset edge equivalent normal force
 
Gusset edge axial force
N
 = 
 = 112.8
[kips]

Gusset edge moment force
M
 = 
 = 14.34
[kip-ft]

Gusset edge interface length
L
 = 
 = 18.750
[in]

Gusset edge equivalent normal force
Ne
 = N +
4 M/L
 = 149.5
[kips]
AISC DG29  Fig B-1


 
Concentrated force from gusset
Pu
 = 
 = 149.5
[kips]

Column section
d
 = 12.900
[in]
tf
 = 0.990
[in]

tw
 = 0.610
[in]
k
 = 1.590
[in]

yield Fy
 = 50.0
[ksi]



Length of bearing
lb
 = Gusset/Column interface length
 = 18.750
[in]

Column web local yielding strength
Rn
 = Fy tw ( 5 k + lb )
 = 814.4
[kips]
AISC 15th  Eq J10-2
Resistance factor-LRFD
φ
 = 1.00
φ Rn
 = 
 = 814.4
[kips]

ratio
 = 0.18
 > Pu
OK
 
Column Web Local Crippling
ratio = 149.5 / 1064.8
0.14
PASS
Gusset Edge Equivalent Normal Force


Refer to AISC DG29  Fig. B-1 for formula below to calculate gusset edge equivalent normal force
 
Gusset edge axial force
N
 = 
 = 112.8
[kips]

Gusset edge moment force
M
 = 
 = 14.34
[kip-ft]

Gusset edge interface length
L
 = 
 = 18.750
[in]

Gusset edge equivalent normal force
Ne
 = N +
4 M/L
 = 149.5
[kips]
AISC DG29  Fig B-1


 
Concentrated force from gusset
Pu
 = 
 = 149.5
[kips]

Column section
d
 = 12.900
[in]
tf
 = 0.990
[in]

tw
 = 0.610
[in]
k
 = 1.590
[in]

yield Fy
 = 50.0
[ksi]
E
 = 29000
[ksi]



Length of bearing
lb
 = Gusset/Column interface length
 = 18.750
[in]

 
when lN  ≥ d/2 , use Eq J10-4
AISC 15th  Eq J10-4
Column web local crippling strength
Rn
 = 0.8 t2w [1+3
lb/d
(
tw/tf
)1.5 ] x
 = 1419.7
[kips]
AISC 15th  Eq J10-4
(
E Fy tf/tw
)0.5

Resistance factor-LRFD
φ
 = 0.75
AISC 15th  J10.3
φRn
 = 
 = 1064.8
[kips]

ratio
 = 0.14
 > Pu
OK
 
Column Web Shear Strength
ratio = 112.8 / 236.1
0.48
PASS
W Shape Column Shear Strength Check



W sect W12X106
d
 = 12.900
[in]
tw
 = 0.610
[in]

Fy
 = 50.0
[ksi]



Gusset to column axial force
Vu
 = from gusset interface force calc
 = 112.8
[kips]

 
Column shear strength
Rn
 = 0.6 Fy d tw
 = 236.1
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 236.1
[kips]

ratio
 = 0.48
 > Vu
OK
 
 
 
 
Seismic SCBF LC2
P1 =449.1 kips (C)
P2 =-615.9 kips (T)
ratio = 0.98
PASS

Gusset Plate - Shear Yielding
ratio = 181.8 / 421.9
0.43
PASS
Plate Shear Yielding Check



Plate size
width bp
 = 18.750
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Agv
 = bp tp
 = 14.063
[in2]

Shear force required
Vu
 = 
 = 181.8
[kips]

Plate shear yielding strength
Rn
 = 0.6 Fy Agv
 = 421.9
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 421.9
[kips]

ratio
 = 0.43
 > Vu
OK
 
Gusset Plate - Shear Rupture
ratio = 181.8 / 411.3
0.44
PASS
Plate Shear Rupture Check



Plate size
width bp
 = 18.750
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in shear
Anv
 = bp tp
 = 14.063
[in2]

Shear force in demand
Vu
 = 
 = 181.8
[kips]

Plate shear rupture strength
Rn
 = 0.6 Fu Anv
 = 548.4
[kips]
AISC 15th  Eq J4-4
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-4
φ Rn
 = 
 = 411.3
[kips]

ratio
 = 0.44
 > Vu
OK
 
 
Gusset Plate - Axial Yield
ratio = 132.5 / 632.8
0.21
PASS
Plate Tensile Yielding Check



Plate size
width bp
 = 18.750
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Ag
 = bp tp
 = 14.063
[in2]

Tensile force required
Pu
 = 
 = 132.5
[kips]

Plate tensile yielding strength
Rn
 = Fy Ag
 = 703.1
[kips]
AISC 15th  Eq J4-1
Resistance factor-LRFD
φ
 = 0.90
AISC 15th  Eq J4-1
φ Rn
 = 
 = 632.8
[kips]

ratio
 = 0.21
 > Pu
OK
 
Gusset Plate - Flexural Yield Interact
ratio =
0.26
PASS
Gusset plate
width bp
 = 18.750
[in]
thick tp
 = 0.750
[in]

yield Fy
 = 50.0
[ksi]

Shear plate - gross area
Ag
 = bp x tp
 = 14.063
[in2]

Shear plate - plastic modulus
Zp
 = ( bp x t2p ) / 4
 = 65.92
[in3]

Flexural strength available
Mc
 = φ Fy Zp     φ=0.90
 = 247.19
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 16.84
[kip-ft]

 
Axial strength available
Pc
 = from axial tensile yield check
 = 632.8
[kips]

Axial strength required
Pr
 = from gusset interface forces calc
 = -132.5
[kips]

 
Shear strength available
Vc
 = from shear yielding check
 = 421.9
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 181.8
[kips]

 
Flexural yield interaction
ratio
 = (
Vr/Vc
)2 + (
Pr/Pc
+
Mr/Mc
)2
 = 0.26
AISC 15th  Eq 10-5
 < 1.0
OK
 
Gusset Plate - Flexural Rupture Interact
ratio =
0.20
PASS
Gusset plate
width bp
 = 18.750
[in]
thick tp
 = 0.750
[in]

tensile Fu
 = 65.0
[ksi]

Net area of plate
An
 = bp x tp
 = 14.063
[in2]

Plastic modulus of net section
Znet
 = ( bp x t2p ) / 4
 = 65.92
[in3]

Flexural strength available
Mc
 = φ Fu Znet     φ=0.75
 = 267.79
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 16.84
[kip-ft]

 
Shear strength available
Vc
 = from shear rupture check
 = 411.3
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 181.8
[kips]

 
Flexural rupture interaction
ratio
 = (
Vr/Vc
)2 + (
Mr/Mc
)2
 = 0.20
AISC 15th  Eq 10-5
 < 1.0
OK
 
 
Gusset to Column Weld Strength
ratio = 14.30 / 14.64
0.98
PASS
Gusset to Column Interface - Forces
shear Vc
 = 181.8
[kips]
axial Hc
 = -132.5
[kips]   in tension
moment Mc
 = 16.84
[kip-ft]

Gusset to Column Interface - Weld Length
Gusset-column fillet weld length
Lwc
 = from user input
 = 18.750
[in]

Gusset to Column Interface - Combined Weld Stress
Weld stress from axial force
fa
 = Hc / Lwc
 = -7.067
[kip/in]
in tension
Weld stress from shear force
fv
 = Vc / Lwc
 = 9.696
[kip/in]

Weld stress from moment force
fb
 = 
M/L2 / 6
 = 3.449
[kip/in]

Weld stress combined - max
fmax
 = [ (fa - fb )2 + f2v ]0.5
 = 14.303
[kip/in]
AISC 15th  Eq 8-11
Weld resultant load angle
θ
 = tan-1 [( fb - fa ) / fv ]
 = 47.3
[°]

Fillet Weld Strength Calc
Fillet weld leg size
w
 = 516
[in]
load angle θ
 = 47.3
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 2   for double fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.32
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 24.408
[kip/in]
AISC 15th  Eq 8-1


Base metal - gusset plate
thickness t
 = 0.750
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - gusset plate is in shear, shear rupture as per AISC 15th  Eq J4-4 is checked
AISC 15th  J2.4
Base metal shear rupture
Rn-b
 = 0.6 Fu t
 = 29.250
[kip/in]
AISC 15th  Eq J4-4


Double fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 24.408
[kip/in]
AISC 15th  Eq 9-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 18.306
[kip/in]

 
When gusset plate is directly welded to beam or column, apply 1.25 ductility factor
to allow adequate force redistribution in the weld group
AISC 15th  Page 13-11
 
Weld strength used for design after applying ductility factor
φ Rn
 = φ Rn x ( 1/1.25 )
 = 14.645
[kip/in]

ratio
 = 0.98
 > fmax
OK
 
 
Column Web Local Yielding
ratio = 175.6 / 814.4
0.22
PASS
Gusset Edge Equivalent Normal Force


Refer to AISC DG29  Fig. B-1 for formula below to calculate gusset edge equivalent normal force
 
Gusset edge axial force
N
 = 
 = -132.5
[kips]

Gusset edge moment force
M
 = 
 = 16.84
[kip-ft]

Gusset edge interface length
L
 = 
 = 18.750
[in]

Gusset edge equivalent normal force
Ne
 = N -
4 M/L
 = -175.6
[kips]
AISC DG29  Fig B-1


 
Concentrated force from gusset
Pu
 = 
 = 175.6
[kips]

Column section
d
 = 12.900
[in]
tf
 = 0.990
[in]

tw
 = 0.610
[in]
k
 = 1.590
[in]

yield Fy
 = 50.0
[ksi]



Length of bearing
lb
 = Gusset/Column interface length
 = 18.750
[in]

Column web local yielding strength
Rn
 = Fy tw ( 5 k + lb )
 = 814.4
[kips]
AISC 15th  Eq J10-2
Resistance factor-LRFD
φ
 = 1.00
φ Rn
 = 
 = 814.4
[kips]

ratio
 = 0.22
 > Pu
OK
 
Column Web Shear Strength
ratio = 132.5 / 236.1
0.56
PASS
W Shape Column Shear Strength Check



W sect W12X106
d
 = 12.900
[in]
tw
 = 0.610
[in]

Fy
 = 50.0
[ksi]



Gusset to column axial force
Vu
 = from gusset interface force calc
 = 132.5
[kips]

 
Column shear strength
Rn
 = 0.6 Fy d tw
 = 236.1
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 236.1
[kips]

ratio
 = 0.56
 > Vu
OK
 
 
 
 

Bot Brace - Gusset to Beam
Direct Weld Connection
Code=AISC 360-16 LRFD

Result Summary
geometries & weld limitations = PASS
limit states max ratio 
0.82
PASS
 
 
Brace Weld Limitation Checks - Gusset to Beam
PASS
Min Fillet Weld Size


Thinner part joined thickness
t
 = 
 = 0.750
[in]

Min fillet weld size allowed
wmin
 = 
 = 0.250
[in]
AISC 15th  Table J2.4
Fillet weld size provided
w
 = 
 = 0.438
[in]

 ≥ wmin
OK
Min Fillet Weld Length


Fillet weld size provided
w
 = 
 = 0.438
[in]

Min fillet weld length allowed
Lmin
 = 4 x w
 = 1.750
[in]
AISC 15th  J2.2b
Min fillet weld length
L
 = 
 = 27.500
[in]

 ≥ Lmin
OK
 
 
 
 
Seismic SCBF LC1
P1 =-559.7 kips (T)
P2 =524.4 kips (C)
ratio = 0.60
PASS

Gusset Plate - Shear Yielding
ratio = 258.0 / 618.8
0.42
PASS
Plate Shear Yielding Check



Plate size
width bp
 = 27.500
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Agv
 = bp tp
 = 20.625
[in2]

Shear force required
Vu
 = 
 = 258.0
[kips]

Plate shear yielding strength
Rn
 = 0.6 Fy Agv
 = 618.8
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 618.8
[kips]

ratio
 = 0.42
 > Vu
OK
 
Gusset Plate - Shear Rupture
ratio = 258.0 / 603.3
0.43
PASS
Plate Shear Rupture Check



Plate size
width bp
 = 27.500
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in shear
Anv
 = bp tp
 = 20.625
[in2]

Shear force in demand
Vu
 = 
 = 258.0
[kips]

Plate shear rupture strength
Rn
 = 0.6 Fu Anv
 = 804.4
[kips]
AISC 15th  Eq J4-4
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-4
φ Rn
 = 
 = 603.3
[kips]

ratio
 = 0.43
 > Vu
OK
 
 
Gusset Plate - Axial Tensile Yield
ratio = 216.0 / 928.1
0.23
PASS
Plate Tensile Yielding Check



Plate size
width bp
 = 27.500
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Ag
 = bp tp
 = 20.625
[in2]

Tensile force required
Pu
 = 
 = 216.0
[kips]

Plate tensile yielding strength
Rn
 = Fy Ag
 = 1031.3
[kips]
AISC 15th  Eq J4-1
Resistance factor-LRFD
φ
 = 0.90
AISC 15th  Eq J4-1
φ Rn
 = 
 = 928.1
[kips]

ratio
 = 0.23
 > Pu
OK
 
 
Gusset Plate - Flexural Yield Interact
ratio =
0.23
PASS
Gusset plate
width bp
 = 27.500
[in]
thick tp
 = 0.750
[in]

yield Fy
 = 50.0
[ksi]

Shear plate - gross area
Ag
 = bp x tp
 = 20.625
[in2]

Shear plate - plastic modulus
Zp
 = ( bp x t2p ) / 4
 = 141.80
[in3]

Flexural strength available
Mc
 = φ Fy Zp     φ=0.90
 = 531.74
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 0.00
[kip-ft]

 
Axial strength available
Pc
 = from axial tensile yield check
 = 928.1
[kips]

Axial strength required
Pr
 = from gusset interface forces calc
 = 216.0
[kips]

 
Shear strength available
Vc
 = from shear yielding check
 = 618.8
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 258.0
[kips]

 
Flexural yield interaction
ratio
 = (
Vr/Vc
)2 + (
Pr/Pc
+
Mr/Mc
)2
 = 0.23
AISC 15th  Eq 10-5
 < 1.0
OK
 
Gusset Plate - Flexural Rupture Interact
ratio =
0.18
PASS
Gusset plate
width bp
 = 27.500
[in]
thick tp
 = 0.750
[in]

tensile Fu
 = 65.0
[ksi]

Net area of plate
An
 = bp x tp
 = 20.625
[in2]

Plastic modulus of net section
Znet
 = ( bp x t2p ) / 4
 = 141.80
[in3]

Flexural strength available
Mc
 = φ Fu Znet     φ=0.75
 = 576.05
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 0.00
[kip-ft]

 
Shear strength available
Vc
 = from shear rupture check
 = 603.3
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 258.0
[kips]

 
Flexural rupture interaction
ratio
 = (
Vr/Vc
)2 + (
Mr/Mc
)2
 = 0.18
AISC 15th  Eq 10-5
 < 1.0
OK
 
 
Gusset to Beam Weld Strength
ratio = 9.38 / 15.59
0.60
PASS
Gusset to Beam Interface - Forces
shear Hb
 = 258.0
[kips]
axial Vb
 = 216.0
[kips]   in compression
moment Mb
 = 0.00
[kip-ft]

 
Gusset-beam fillet weld length
Lw
 = 
 = 27.500
[in]

Gusset to Beam Interface - Combined Weld Stress
Weld stress from axial force
fa
 = Vb / Lwb
 = 0.000
[kip/in]
in compression
Weld stress from shear force
fv
 = Hb / Lwb
 = 9.382
[kip/in]

Weld stress from moment force
fb
 = 
M/L2 / 6
 = 0.000
[kip/in]

Weld stress combined - max
fmax
 = fv
 = 9.382
[kip/in]
AISC 15th  Eq 8-11
Weld resultant load angle
θ
 = weld only has shear component
 = 0.0
[°]

Fillet Weld Strength Calc
Fillet weld leg size
w
 = 716
[in]
load angle θ
 = 0.0
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 2   for double fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.00
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 25.982
[kip/in]
AISC 15th  Eq 8-1


Base metal - gusset plate
thickness t
 = 0.750
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - gusset plate is in shear, shear rupture as per AISC 15th  Eq J4-4 is checked
AISC 15th  J2.4
Base metal shear rupture
Rn-b
 = 0.6 Fu t
 = 29.250
[kip/in]
AISC 15th  Eq J4-4


Double fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 25.982
[kip/in]
AISC 15th  Eq 9-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 19.487
[kip/in]

 
When gusset plate is directly welded to beam or column, apply 1.25 ductility factor
to allow adequate force redistribution in the weld group
AISC 15th  Page 13-11
 
Weld strength used for design after applying ductility factor
φ Rn
 = φ Rn x ( 1/1.25 )
 = 15.589
[kip/in]

ratio
 = 0.60
 > fmax
OK
 
 
Beam Web Local Yielding
ratio = 216.0 / 1022.9
0.21
PASS
 
Concentrated force from gusset
Pu
 = 
 = 216.0
[kips]

Beam section
d
 = 24.700
[in]
tf
 = 1.090
[in]

tw
 = 0.650
[in]
k
 = 1.590
[in]

yield Fy
 = 50.0
[ksi]



Length of bearing
lb
 = Gusset/Beam interface length
 = 27.500
[in]

Gusset plate corner clip
clip
 = from user input
 = 1.000
[in]

Distance from normal force applied point to member end
lN
 = 0.5 lb + clip
 = 14.750
[in]

 
when lN  ≤ d , use AISC 15th  Eq J10-3
AISC 15th  Eq J10-3
 
Beam web local yielding strength
Rn
 = Fy tw ( 2.5 k + lb )
 = 1022.9
[kips]
AISC 15th  Eq J10-3
Resistance factor-LRFD
φ
 = 1.00
φ Rn
 = 
 = 1022.9
[kips]

ratio
 = 0.21
 > Pu
OK
 
Beam Web Local Crippling
ratio = 216.0 / 1003.3
0.22
PASS
 
Concentrated force from gusset
Pu
 = 
 = 216.0
[kips]

Beam section
d
 = 24.700
[in]
tf
 = 1.090
[in]

tw
 = 0.650
[in]
k
 = 1.590
[in]

yield Fy
 = 50.0
[ksi]
E
 = 29000
[ksi]



Length of bearing
lb
 = Gusset/Beam interface length
 = 27.500
[in]

Gusset plate corner clip
clip
 = from user input
 = 1.000
[in]

Distance from normal force applied point to member end
lN
 = 0.5 lb + clip
 = 14.750
[in]

 
when lN  ≥ d/2 , use Eq J10-4
AISC 15th  Eq J10-4
Beam web local crippling strength
Rn
 = 0.8 t2w [1+3
lb/d
(
tw/tf
)1.5 ] x
 = 1337.7
[kips]
AISC 15th  Eq J10-4
(
E Fy tf/tw
)0.5

Resistance factor-LRFD
φ
 = 0.75
AISC 15th  J10.3
φRn
 = 
 = 1003.3
[kips]

ratio
 = 0.22
 > Pu
OK
 
 
 
 
Seismic SCBF LC2
P1 =449.1 kips (C)
P2 =-615.9 kips (T)
ratio = 0.82
PASS

Gusset Plate - Shear Yielding
ratio = 303.0 / 618.8
0.49
PASS
Plate Shear Yielding Check



Plate size
width bp
 = 27.500
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Agv
 = bp tp
 = 20.625
[in2]

Shear force required
Vu
 = 
 = 303.0
[kips]

Plate shear yielding strength
Rn
 = 0.6 Fy Agv
 = 618.8
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 618.8
[kips]

ratio
 = 0.49
 > Vu
OK
 
Gusset Plate - Shear Rupture
ratio = 303.0 / 603.3
0.50
PASS
Plate Shear Rupture Check



Plate size
width bp
 = 27.500
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in shear
Anv
 = bp tp
 = 20.625
[in2]

Shear force in demand
Vu
 = 
 = 303.0
[kips]

Plate shear rupture strength
Rn
 = 0.6 Fu Anv
 = 804.4
[kips]
AISC 15th  Eq J4-4
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-4
φ Rn
 = 
 = 603.3
[kips]

ratio
 = 0.50
 > Vu
OK
 
 
Gusset Plate - Axial Yield
ratio = 253.7 / 928.1
0.27
PASS
Plate Tensile Yielding Check



Plate size
width bp
 = 27.500
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Ag
 = bp tp
 = 20.625
[in2]

Tensile force required
Pu
 = 
 = 253.7
[kips]

Plate tensile yielding strength
Rn
 = Fy Ag
 = 1031.3
[kips]
AISC 15th  Eq J4-1
Resistance factor-LRFD
φ
 = 0.90
AISC 15th  Eq J4-1
φ Rn
 = 
 = 928.1
[kips]

ratio
 = 0.27
 > Pu
OK
 
Gusset Plate - Axial Tensile Rupture
ratio = 253.7 / 1005.5
0.25
PASS
Plate Tensile Rupture Check



Plate size
width bp
 = 27.500
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in tension
Ant
 = bp tp
 = 20.625
[in2]

Tensile force required
Pu
 = 
 = 253.7
[kips]

Plate tensile rupture strength
Rn
 = Fu Ant
 = 1340.6
[kips]
AISC 15th  Eq J4-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-2
φ Rn
 = 
 = 1005.5
[kips]
AISC 15th  Eq J4-2
ratio
 = 0.25
 > Pu
OK
 
 
Gusset Plate - Flexural Yield Interact
ratio =
0.31
PASS
Gusset plate
width bp
 = 27.500
[in]
thick tp
 = 0.750
[in]

yield Fy
 = 50.0
[ksi]

Shear plate - gross area
Ag
 = bp x tp
 = 20.625
[in2]

Shear plate - plastic modulus
Zp
 = ( bp x t2p ) / 4
 = 141.80
[in3]

Flexural strength available
Mc
 = φ Fy Zp     φ=0.90
 = 531.74
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 0.00
[kip-ft]

 
Axial strength available
Pc
 = from axial tensile yield check
 = 928.1
[kips]

Axial strength required
Pr
 = from gusset interface forces calc
 = -253.7
[kips]

 
Shear strength available
Vc
 = from shear yielding check
 = 618.8
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 303.0
[kips]

 
Flexural yield interaction
ratio
 = (
Vr/Vc
)2 + (
Pr/Pc
+
Mr/Mc
)2
 = 0.31
AISC 15th  Eq 10-5
 < 1.0
OK
 
Gusset Plate - Flexural Rupture Interact
ratio =
0.32
PASS
Gusset plate
width bp
 = 27.500
[in]
thick tp
 = 0.750
[in]

tensile Fu
 = 65.0
[ksi]

Net area of plate
An
 = bp x tp
 = 20.625
[in2]

Plastic modulus of net section
Znet
 = ( bp x t2p ) / 4
 = 141.80
[in3]

Flexural strength available
Mc
 = φ Fu Znet     φ=0.75
 = 576.05
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 0.00
[kip-ft]

 
Axial strength available
Pc
 = from axial tensile rupture check
 = 1005.5
[kips]

Axial strength required
Pr
 = from gusset interface forces calc
 = -253.7
[kips]

 
Shear strength available
Vc
 = from shear rupture check
 = 603.3
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 303.0
[kips]

 
Flexural rupture interaction
ratio
 = (
Vr/Vc
)2 + (
Pr/Pc
+
Mr/Mc
)2
 = 0.32
AISC 15th  Eq 10-5
 < 1.0
OK
 
 
Gusset to Beam Weld Strength
ratio = 14.37 / 17.55
0.82
PASS
Gusset to Beam Interface - Forces
shear Hb
 = 303.0
[kips]
axial Vb
 = -253.7
[kips]   in tension
moment Mb
 = 0.00
[kip-ft]

 
Gusset-beam fillet weld length
Lw
 = 
 = 27.500
[in]

Gusset to Beam Interface - Combined Weld Stress
Weld stress from axial force
fa
 = Vb / Lwb
 = -9.225
[kip/in]
in tension
Weld stress from shear force
fv
 = Hb / Lwb
 = 11.018
[kip/in]

Weld stress from moment force
fb
 = 
M/L2 / 6
 = 0.000
[kip/in]

Weld stress combined - max
fmax
 = [ (fa - fb )2 + f2v ]0.5
 = 14.370
[kip/in]
AISC 15th  Eq 8-11
Weld resultant load angle
θ
 = tan-1 [( fb - fa ) / fv ]
 = 39.9
[°]

Fillet Weld Strength Calc
Fillet weld leg size
w
 = 716
[in]
load angle θ
 = 39.9
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 2   for double fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.26
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 32.665
[kip/in]
AISC 15th  Eq 8-1


Base metal - gusset plate
thickness t
 = 0.750
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - gusset plate is in shear, shear rupture as per AISC 15th  Eq J4-4 is checked
AISC 15th  J2.4
Base metal shear rupture
Rn-b
 = 0.6 Fu t
 = 29.250
[kip/in]
AISC 15th  Eq J4-4


Double fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 29.250
[kip/in]
AISC 15th  Eq 9-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 21.938
[kip/in]

 
When gusset plate is directly welded to beam or column, apply 1.25 ductility factor
to allow adequate force redistribution in the weld group
AISC 15th  Page 13-11
 
Weld strength used for design after applying ductility factor
φ Rn
 = φ Rn x ( 1/1.25 )
 = 17.550
[kip/in]

ratio
 = 0.82
 > fmax
OK
 
 
Beam Web Local Yielding
ratio = 253.7 / 1022.9
0.25
PASS
 
Concentrated force from gusset
Pu
 = 
 = 253.7
[kips]

Beam section
d
 = 24.700
[in]
tf
 = 1.090
[in]

tw
 = 0.650
[in]
k
 = 1.590
[in]

yield Fy
 = 50.0
[ksi]



Length of bearing
lb
 = Gusset/Beam interface length
 = 27.500
[in]

Gusset plate corner clip
clip
 = from user input
 = 1.000
[in]

Distance from normal force applied point to member end
lN
 = 0.5 lb + clip
 = 14.750
[in]

 
when lN  ≤ d , use AISC 15th  Eq J10-3
AISC 15th  Eq J10-3
 
Beam web local yielding strength
Rn
 = Fy tw ( 2.5 k + lb )
 = 1022.9
[kips]
AISC 15th  Eq J10-3
Resistance factor-LRFD
φ
 = 1.00
φ Rn
 = 
 = 1022.9
[kips]

ratio
 = 0.25
 > Pu
OK
 
 
 

Beam to Column
Direct Weld Connection
Code=AISC 360-16 LRFD

Result Summary
geometries & weld limitations = PASS
limit states max ratio 
0.97
PASS
 
 
Beam Flange Fillet Weld Limitation
PASS
Min Fillet Weld Size


Thinner part joined thickness
t
 = 
 = 0.990
[in]

Min fillet weld size allowed
wmin
 = 
 = 0.313
[in]
AISC 15th  Table J2.4
Fillet weld size provided
w
 = 
 = 0.313
[in]

 ≥ wmin
OK
Min Fillet Weld Length


Fillet weld size provided
w
 = 
 = 0.313
[in]

Min fillet weld length allowed
Lmin
 = 4 x w
 = 1.250
[in]
AISC 15th  J2.2b
Min fillet weld length
L
 = 0.5 bfb - k1b
 = 4.975
[in]

 ≥ Lmin
OK
 
Beam Web Fillet Weld Limitation
PASS
Min Fillet Weld Size


Thinner part joined thickness
t
 = 
 = 0.650
[in]

Min fillet weld size allowed
wmin
 = 
 = 0.250
[in]
AISC 15th  Table J2.4
Fillet weld size provided
w
 = 
 = 0.563
[in]

 ≥ wmin
OK
Min Fillet Weld Length


Fillet weld size provided
w
 = 
 = 0.563
[in]

Min fillet weld length allowed
Lmin
 = 4 x w
 = 2.250
[in]
AISC 15th  J2.2b
Min fillet weld length
L
 = db - 2 kb
 = 20.700
[in]

 ≥ Lmin
OK
 
 
 
Seismic SCBF LC1
shear V = 435.1 kips     axial P = 58.3 kips (C)
ratio = 0.90
PASS

Beam to Column - Beam Shear
ratio = 435.1 / 481.7
0.90
PASS
W Shape Beam Shear Yielding Check



W sect W24X146
d
 = 24.700
[in]
tw
 = 0.650
[in]

Fy
 = 50.0
[ksi]



Beam to column shear
Vu
 = from gusset interface force calc
 = 435.1
[kips]

 
Beam shear strength
Rn
 = 0.6 Fy d tw
 = 481.7
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 481.7
[kips]

ratio
 = 0.90
 > Vu
OK
 
Beam to Column - Beam Stub Compressive Strength
ratio = 58.3 / 1935.0
0.03
PASS
W Shape Compression Check



W sect W24X146
A
 = 43.000
[in2]
ry
 = 3.022
[in]

Fy
 = 50.0
[ksi]

 
W sect effective length factor
K
 = 
 = 1.00

W sect unbraced length
L
 = 
 = 30.000
[in]

W sect slenderness
KL/r
 = 1.00 x L  / ry
 = 9.93

Compression force on W sect
Pu
 = 
 = 58.3
[kips]



when  
KL/r
  ≤  25
AISC 15th  J4.4 (a)
W sect compression provided
Rn
 = Fy x A
 = 2150.0
[kips]
AISC 15th  Eq J4-6
Resistance factor-LRFD
φ
 = 0.90
AISC 15th  J4.4 (a)
φ Rn
 = 
 = 1935.0
[kips]

ratio
 = 0.03
 > Pu
OK
 
 
Beam W Shape Axial Force Distribution
W Shape Beam Axial Force Distribution



W sect W24X146
d
 = 24.700
[in]
bf
 = 12.900
[in]

tf
 = 1.090
[in]
tw
 = 0.650
[in]

A
 = 43.000
[in2]



W shape one side flange area
Af
 = bf tf
 = 14.061
[in2]

W shape web area
Aw
 = A- 2 Af
 = 14.878
[in2]

W shape axial force
P
 = 
 = 58.3
[kips]

Axial force on flange
Pf
 = 
Af/A
P
 = 19.1
[kips]

Axial force on web
Pw
 = 
Aw/A
P
 = 20.2
[kips]

 
Beam to Column - W Shape Flange Weld
ratio = NA
0.00
PASS
 
Beam flange tensile force
Pu
 = from beam axial force distribution calc
 = 19.1
[kips]

 
Beam flange force is in compression, the flange weld check is not needed
 
 
Beam to Column - W Shape Web Weld
ratio = 21.02 / 25.05
0.84
PASS
 
Beam section W24X146
db
 = 24.700
[in]
kb
 = 2.000
[in]

Fillet weld length on beam web
L
 = db - 2 kb
 = 20.700
[in]

Weld Group Forces
Weld group forces
shear V
 = 435.1
[kips]
axial P
 = 20.2
[kips]   in compression
 
Beam web fillet weld size
w
 = 
 = 0.563
[in]

 
Combined Weld Stress
Weld stress from axial force
fa
 = P / L
 = 0.000
[kip/in]
in compression
Weld stress from shear force
fv
 = V / L
 = 21.019
[kip/in]

Weld stress combined - max
fmax
 = fv
 = 21.019
[kip/in]
AISC 15th  Eq 8-11
Weld stress load angle
θ
 = 
 = 0.0
[°]

Fillet Weld Strength Calc
Fillet weld leg size
w
 = 916
[in]
load angle θ
 = 0.0
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 2   for double fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.00
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 33.406
[kip/in]
AISC 15th  Eq 8-1


Base metal - beam web
thickness t
 = 0.650
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - beam web is in tension, tensile rupture as per AISC 15th  Eq J4-2 is checked
AISC 15th  J2.4
Base metal tensile rupture
Rn-b
 = Fu t
 = 42.250
[kip/in]
AISC 15th  Eq J4-2


Double fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 33.406
[kip/in]
AISC 15th  Eq 9-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 25.054
[kip/in]

ratio
 = 0.84
 > fmax
OK
 
 
Column Web Local Yielding - Beam Flange
ratio = 19.1 / 275.7
0.07
PASS
Column Web Local Yielding at Beam Flange Location



Column sect W12X106
kc
 = 1.590
[in]
twc
 = 0.610
[in]

Fyc
 = 50.0
[ksi]

 
Beam section W24X146
tfb
 = 1.090
[in]



Beam flange force
Pu
 = from beam axial force distribution calc
 = 19.1
[kips]

 
Column web local yielding strength
Rn
 = Fyc twc (5 kc + tfb )
 = 275.7
[kips]
AISC 15th  Eq 4-2
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq 4-2
φ Rn
 = 
 = 275.7
[kips]

ratio
 = 0.07
 > Pu
OK
 
Column Web Local Yielding - Beam Web
ratio = 20.2 / 631.4
0.03
PASS
Column Web Local Yielding at Beam Web Location



Column sect W12X106
kc
 = 1.590
[in]
twc
 = 0.610
[in]

Fyc
 = 50.0
[ksi]

 
Beam section W24X146
Tb
 = 20.700
[in]



Beam axial force on beam web
Pu
 = from beam axial force distribution calc
 = 20.2
[kips]

 
Column web local yielding strength
Rn
 = Fyc twc Tb
 = 631.4
[kips]
AISC 15th  Eq J10-2
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  J10.2
φ Rn
 = 
 = 631.4
[kips]

ratio
 = 0.03
 > Pu
OK
 
Column Web Local Crippling - Beam Web
ratio = 58.3 / 1139.9
0.05
PASS
Column Web Local Crippling at Beam Web Location



Column sect W12X106
dc
 = 12.900
[in]
tfc
 = 0.990
[in]

twc
 = 0.610
[in]

Fyc
 = 50.0
[ksi]
E
 = 29000
[ksi]

 
Beam section W24X146
Tb
 = 20.700
[in]



Beam web compression force
Pu
 = from beam axial force distribution calc
 = 58.3
[kips]

Column web local crippling strength
Rn
 = 0.8 t2wc [1+3
Tb/dc
(
twc/tfc
)1.5 ] x
 = 1519.9
[kips]
AISC 15th  Eq J10-4
(
E Fcy tfc/twc
)0.5

Resistance factor-LRFD
φ
 = 0.75
AISC 15th  J10.3
φRn
 = 
 = 1139.9
[kips]

ratio
 = 0.05
 > Pu
OK
 
 
 
Seismic SCBF LC2
shear V = 465.4 kips     axial P = 78.6 kips (C)
ratio = 0.97
PASS

Beam to Column - Beam Shear
ratio = 465.4 / 481.7
0.97
PASS
W Shape Beam Shear Yielding Check



W sect W24X146
d
 = 24.700
[in]
tw
 = 0.650
[in]

Fy
 = 50.0
[ksi]



Beam to column shear
Vu
 = from gusset interface force calc
 = 465.4
[kips]

 
Beam shear strength
Rn
 = 0.6 Fy d tw
 = 481.7
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 481.7
[kips]

ratio
 = 0.97
 > Vu
OK
 
Beam to Column - Beam Stub Compressive Strength
ratio = 78.6 / 1935.0
0.04
PASS
W Shape Compression Check



W sect W24X146
A
 = 43.000
[in2]
ry
 = 3.022
[in]

Fy
 = 50.0
[ksi]

 
W sect effective length factor
K
 = 
 = 1.00

W sect unbraced length
L
 = 
 = 30.000
[in]

W sect slenderness
KL/r
 = 1.00 x L  / ry
 = 9.93

Compression force on W sect
Pu
 = 
 = 78.6
[kips]



when  
KL/r
  ≤  25
AISC 15th  J4.4 (a)
W sect compression provided
Rn
 = Fy x A
 = 2150.0
[kips]
AISC 15th  Eq J4-6
Resistance factor-LRFD
φ
 = 0.90
AISC 15th  J4.4 (a)
φ Rn
 = 
 = 1935.0
[kips]

ratio
 = 0.04
 > Pu
OK
 
 
Beam W Shape Axial Force Distribution
W Shape Beam Axial Force Distribution



W sect W24X146
d
 = 24.700
[in]
bf
 = 12.900
[in]

tf
 = 1.090
[in]
tw
 = 0.650
[in]

A
 = 43.000
[in2]



W shape one side flange area
Af
 = bf tf
 = 14.061
[in2]

W shape web area
Aw
 = A- 2 Af
 = 14.878
[in2]

W shape axial force
P
 = 
 = 78.6
[kips]

Axial force on flange
Pf
 = 
Af/A
P
 = 25.7
[kips]

Axial force on web
Pw
 = 
Aw/A
P
 = 27.2
[kips]

 
Beam to Column - W Shape Flange Weld
ratio = NA
0.00
PASS
 
Beam flange tensile force
Pu
 = from beam axial force distribution calc
 = 25.7
[kips]

 
Beam flange force is in compression, the flange weld check is not needed
 
 
Beam to Column - W Shape Web Weld
ratio = 22.48 / 25.05
0.90
PASS
 
Beam section W24X146
db
 = 24.700
[in]
kb
 = 2.000
[in]

Fillet weld length on beam web
L
 = db - 2 kb
 = 20.700
[in]

Weld Group Forces
Weld group forces
shear V
 = 465.4
[kips]
axial P
 = 27.2
[kips]   in compression
 
Beam web fillet weld size
w
 = 
 = 0.563
[in]

 
Combined Weld Stress
Weld stress from axial force
fa
 = P / L
 = 0.000
[kip/in]
in compression
Weld stress from shear force
fv
 = V / L
 = 22.483
[kip/in]

Weld stress combined - max
fmax
 = fv
 = 22.483
[kip/in]
AISC 15th  Eq 8-11
Weld stress load angle
θ
 = 
 = 0.0
[°]

Fillet Weld Strength Calc
Fillet weld leg size
w
 = 916
[in]
load angle θ
 = 0.0
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 2   for double fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.00
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 33.406
[kip/in]
AISC 15th  Eq 8-1


Base metal - beam web
thickness t
 = 0.650
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - beam web is in tension, tensile rupture as per AISC 15th  Eq J4-2 is checked
AISC 15th  J2.4
Base metal tensile rupture
Rn-b
 = Fu t
 = 42.250
[kip/in]
AISC 15th  Eq J4-2


Double fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 33.406
[kip/in]
AISC 15th  Eq 9-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 25.054
[kip/in]

ratio
 = 0.90
 > fmax
OK
 
 
Column Web Local Yielding - Beam Flange
ratio = 25.7 / 275.7
0.09
PASS
Column Web Local Yielding at Beam Flange Location



Column sect W12X106
kc
 = 1.590
[in]
twc
 = 0.610
[in]

Fyc
 = 50.0
[ksi]

 
Beam section W24X146
tfb
 = 1.090
[in]



Beam flange force
Pu
 = from beam axial force distribution calc
 = 25.7
[kips]

 
Column web local yielding strength
Rn
 = Fyc twc (5 kc + tfb )
 = 275.7
[kips]
AISC 15th  Eq 4-2
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq 4-2
φ Rn
 = 
 = 275.7
[kips]

ratio
 = 0.09
 > Pu
OK
 
Column Web Local Yielding - Beam Web
ratio = 27.2 / 631.4
0.04
PASS
Column Web Local Yielding at Beam Web Location



Column sect W12X106
kc
 = 1.590
[in]
twc
 = 0.610
[in]

Fyc
 = 50.0
[ksi]

 
Beam section W24X146
Tb
 = 20.700
[in]



Beam axial force on beam web
Pu
 = from beam axial force distribution calc
 = 27.2
[kips]

 
Column web local yielding strength
Rn
 = Fyc twc Tb
 = 631.4
[kips]
AISC 15th  Eq J10-2
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  J10.2
φ Rn
 = 
 = 631.4
[kips]

ratio
 = 0.04
 > Pu
OK
 
Column Web Local Crippling - Beam Web
ratio = 78.6 / 1139.9
0.07
PASS
Column Web Local Crippling at Beam Web Location



Column sect W12X106
dc
 = 12.900
[in]
tfc
 = 0.990
[in]

twc
 = 0.610
[in]

Fyc
 = 50.0
[ksi]
E
 = 29000
[ksi]

 
Beam section W24X146
Tb
 = 20.700
[in]



Beam web compression force
Pu
 = from beam axial force distribution calc
 = 78.6
[kips]

Column web local crippling strength
Rn
 = 0.8 t2wc [1+3
Tb/dc
(
twc/tfc
)1.5 ] x
 = 1519.9
[kips]
AISC 15th  Eq J10-4
(
E Fcy tfc/twc
)0.5

Resistance factor-LRFD
φ
 = 0.75
AISC 15th  J10.3
φRn
 = 
 = 1139.9
[kips]

ratio
 = 0.07
 > Pu
OK
 
 

Beam Splice Calculation
Brace Seismic System = SCBF
Code=AISC 360-16 LRFD

Result Summary
geometries & weld limitations = PASS
limit states max ratio 
0.28
PASS
 
 
Min Clearance Gap Between Beam Stub & Beam
PASS
 
Refer to AISC Seismic Design Manual 2nd Ed Page 5-235, in order to prevent binding at a 0.025 rad storey drift, the clearance between beam stub and beam at the splice must be at least (0.5 beam depth x 0.025 rad)
 
Beam sect W24X146 depth
d
 = 
 = 24.700
[in]

 
Min required gap between beam stub and beam
cmin
 = 0.5 d x 0.025 rad
 = 0.309
[in]

 
Actual gap between beam stub and beam
c
 = from user input
 = 1.000
[in]

 ≥ cmin
OK
 
Splice Plate Thickness Limit for Ductility
PASS
 
Bolt grade
grade
 = A325-X

Nominal tensile/shear stress
Ft
 = 90.0
[ksi]
Fv
 = 68.0
[ksi]
AISC 15th  Table J3.2
Bolt diameter & area
db
 = 0.875
[in]
Area Ab
 = 0.601
[in2]

Bolt group
row nv
 = 6
col nh
 = 2

row sv
 = 3.000
[in]
col sh
 = 3.000
[in]

Bolt group coefficient C'
C'
 = from AISC 15th  Table 7-6 ~ 7-13
 = 54.2

 
Splice plate thickness & depth
t
 = 0.375
[in]
d
 = 19.000
[in]

Fy
 = 50.0
[ksi]

 
Bolt group flexural strength
Mmax
 = 
Fv/0.9
( Ab C')
 = 205.08
[kip-ft]
AISC 15th  Eq 10-4
 
Max allowed splice plate thickness
tmax
 = 
6 Mmax/Fy d2
 = 0.818
[in]
AISC 15th  Eq 10-3
 
Splice plate thickness provided
2t
 = t x 2 sides
 = 0.750
[in]

 ≤ tmax
OK
 
 
 
 
Seismic SCBF LC1
shear V = 19.9 kips     axial P = 71.3 kips (C)
ratio = 0.28
PASS

Beam Web - Outer Side Bolt Group Eccentricity - Shear Only
 
Shear V - from user input, beam end shear reaction caused by gravity load only
ex         - hor distance from column face to the beam splice outer side bolt group CG point
 
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 0.0
[kips]

Resultant force to ver Y axis angle
θ
 = tan-1 (P / V)
 = 0.00
[°]



Bolt group row and column
bolt row nr
 = 6
bolt col nc
 = 2

Bolt row/column spacing
bolt row sr
 = 3.000
[in]
bolt col sc
 = 3.000
[in]

 
Shear force to bolt group CG ecc
ex
 = 
 = 34.500
[in]

 
Shear force to ver Y axis angle
θ
 = 
 = 0.00
[°]

 
Bolt group coefficient C
C
 = from AISC 15th  Table 7-6 ~ 7-13
 = 1.552

Bolt group eccentricity coefficient
Cec
 = C / ( nr x nc )
 = 0.129

 
Beam Web - Outer Side Bolt Group - Bolt Shear
ratio = 19.9 / 94.9
0.21
PASS
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 0.0
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 19.9
[kips]



Bolt shear stress
bolt grade
 = A325-X
Fnv
 = 68.0
[ksi]
AISC 15th  Table J3.2
bolt dia db
 = 0.875
[in]
bolt area Ab
 = 0.601
[in2]

Number of bolt carried shear
ns
 = 12.0
shear plane m
 = 2

Bolt group eccentricity coefficient
Cec
 = from 'Bolt Group Eccentricity' calc
 = 0.129

Required shear strength
Vu
 = 
 = 19.9
[kips]

Bolt shear strength
Rn
 = Fnv Ab ns m Cec
 = 126.6
[kips]
AISC 15th  Eq J3-1
Bolt resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J3-1
φ Rn
 = 
 = 94.9
[kips]

ratio
 = 0.21
 > Vu
OK
 
Beam Web - Outer Side Bolt Group - Bolt Bearing
ratio = 19.9 / 94.9
0.21
PASS
The bolt group is oriented so that the shear force V is in ver. direction and the axial force P is in hor. direction
 
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 0.0
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 19.9
[kips]

Single Bolt Shear Strength


Bolt shear stress
bolt grade
 = A325-X
Fnv
 = 68.0
[ksi]
AISC 15th  Table J3.2
bolt dia db
 = 0.875
[in]
bolt area Ab
 = 0.601
[in2]

Single bolt shear strength
Rn-bolt
 = 2 x Fnv Ab
 = 81.8
[kips]
AISC 15th  Eq J3-1
Bolt Bearing/TearOut Strength on Plate



Bolt hole diameter
bolt dia db
 = 78
[in]
bolt hole dia dh
 = 1516
[in]
AISC 15th  Table J3.3
Bolt spacing
spacing Ls
 = 3.000
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate thickness
t
 = 0.650
[in]

Interior Bolt



Bolt hole edge clear distance
Lc
 = Ls - dh
 = 2.063
[in]

Bolt tear out/bearing strength
Rn-t&b-in
 = 1.2 Lc t Fu ≤ 2.4 db t m Fu
AISC 15th  Eq J3-6a
 = 104.6 ≤ 88.7
 = 88.7
[kips]

Bolt strength at interior
Rn-in
 = min ( Rn-t&b-in , Rn-bolt )
 = 81.8
[kips]



Number of bolt
interior nin
 = 12

 
Bolt group eccentricity coefficient
Cec
 = from calc in above section
 = 0.129

 
Bolt bearing strength for all bolts
Rn
 = (nin Rn-in ) Cec
 = 126.6
[kips]

Required shear strength
Vu
 = 
 = 19.9
[kips]

Bolt resistance factor-LRFD
φ
 = 0.75
AISC 15th  J3-10
φ Rn
 = 
 = 94.9
[kips]

ratio
 = 0.21
 > Vu
OK
 
 
Beam Web - Inner Side Bolt Group Eccentricity - Shear Only
 
Shear V - from user input, beam end shear reaction caused by gravity load only
ex         - hor distance from column face to the beam splice inner side bolt group CG point
 
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 0.0
[kips]

Resultant force to ver Y axis angle
θ
 = tan-1 (P / V)
 = 0.00
[°]



Bolt group row and column
bolt row nr
 = 6
bolt col nc
 = 2

Bolt row/column spacing
bolt row sr
 = 3.000
[in]
bolt col sc
 = 3.000
[in]

 
Shear force to bolt group CG ecc
ex
 = 
 = 26.500
[in]

 
Shear force to ver Y axis angle
θ
 = 
 = 0.00
[°]

 
Bolt group coefficient C
C
 = from AISC 15th  Table 7-6 ~ 7-13
 = 2.007

Bolt group eccentricity coefficient
Cec
 = C / ( nr x nc )
 = 0.167

 
Beam Web - Inner Side Bolt Group - Bolt Shear
ratio = 19.9 / 122.9
0.16
PASS
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 0.0
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 19.9
[kips]



Bolt shear stress
bolt grade
 = A325-X
Fnv
 = 68.0
[ksi]
AISC 15th  Table J3.2
bolt dia db
 = 0.875
[in]
bolt area Ab
 = 0.601
[in2]

Number of bolt carried shear
ns
 = 12.0
shear plane m
 = 2

Bolt group eccentricity coefficient
Cec
 = from 'Bolt Group Eccentricity' calc
 = 0.167

Required shear strength
Vu
 = 
 = 19.9
[kips]

Bolt shear strength
Rn
 = Fnv Ab ns m Cec
 = 163.9
[kips]
AISC 15th  Eq J3-1
Bolt resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J3-1
φ Rn
 = 
 = 122.9
[kips]

ratio
 = 0.16
 > Vu
OK
 
Beam Web - Inner Side Bolt Group - Bolt Bearing
ratio = 19.9 / 122.9
0.16
PASS
The bolt group is oriented so that the shear force V is in ver. direction and the axial force P is in hor. direction
 
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 0.0
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 19.9
[kips]

Single Bolt Shear Strength


Bolt shear stress
bolt grade
 = A325-X
Fnv
 = 68.0
[ksi]
AISC 15th  Table J3.2
bolt dia db
 = 0.875
[in]
bolt area Ab
 = 0.601
[in2]

Single bolt shear strength
Rn-bolt
 = 2 x Fnv Ab
 = 81.8
[kips]
AISC 15th  Eq J3-1
Bolt Bearing/TearOut Strength on Plate



Bolt hole diameter
bolt dia db
 = 78
[in]
bolt hole dia dh
 = 1516
[in]
AISC 15th  Table J3.3
Bolt spacing
spacing Ls
 = 3.000
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate thickness
t
 = 0.650
[in]

Interior Bolt



Bolt hole edge clear distance
Lc
 = Ls - dh
 = 2.063
[in]

Bolt tear out/bearing strength
Rn-t&b-in
 = 1.2 Lc t Fu ≤ 2.4 db t m Fu
AISC 15th  Eq J3-6a
 = 104.6 ≤ 88.7
 = 88.7
[kips]

Bolt strength at interior
Rn-in
 = min ( Rn-t&b-in , Rn-bolt )
 = 81.8
[kips]



Number of bolt
interior nin
 = 12

 
Bolt group eccentricity coefficient
Cec
 = from calc in above section
 = 0.167

 
Bolt bearing strength for all bolts
Rn
 = (nin Rn-in ) Cec
 = 163.9
[kips]

Required shear strength
Vu
 = 
 = 19.9
[kips]

Bolt resistance factor-LRFD
φ
 = 0.75
AISC 15th  J3-10
φ Rn
 = 
 = 122.9
[kips]

ratio
 = 0.16
 > Vu
OK
 
 
Beam Web - Inner Side Bolt Group Eccentricity - Shear + Axial
 
Shear V - from user input, beam end shear reaction caused by gravity load only
Axial  P -  from gusset interface forces calc , beam member axial load Pbm
ex         - hor distance from the gusset-beam weld line CG point to the beam splice inner side bolt group CG point
 
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 71.3
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 74.0
[kips]

Resultant force to ver Y axis angle
θ
 = tan-1 (P / V)
 = 74.41
[°]



Bolt group row and column
bolt row nr
 = 6
bolt col nc
 = 2

Bolt row/column spacing
bolt row sr
 = 3.000
[in]
bolt col sc
 = 3.000
[in]

 
Shear force to bolt group CG ecc
ex
 = 
 = 12.125
[in]

 
Shear force to ver Y axis angle
θ
 = 
 = 74.41
[°]

 
Bolt group coefficient C
C
 = from AISC 15th  Table 7-6 ~ 7-13
 = 8.067

Bolt group eccentricity coefficient
Cec
 = C / ( nr x nc )
 = 0.672

 
Beam Web - Inner Side Bolt Group - Bolt Shear
ratio = 74.0 / 494.6
0.15
PASS
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 71.3
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 74.0
[kips]



Bolt shear stress
bolt grade
 = A325-X
Fnv
 = 68.0
[ksi]
AISC 15th  Table J3.2
bolt dia db
 = 0.875
[in]
bolt area Ab
 = 0.601
[in2]

Number of bolt carried shear
ns
 = 12.0
shear plane m
 = 2

Bolt group eccentricity coefficient
Cec
 = from 'Bolt Group Eccentricity' calc
 = 0.672

Required shear strength
Vu
 = 
 = 74.0
[kips]

Bolt shear strength
Rn
 = Fnv Ab ns m Cec
 = 659.5
[kips]
AISC 15th  Eq J3-1
Bolt resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J3-1
φ Rn
 = 
 = 494.6
[kips]

ratio
 = 0.15
 > Vu
OK
 
Beam Web - Inner Side Bolt Group - Bolt Bearing
ratio = 74.0 / 482.1
0.15
PASS
The bolt group is oriented so that the shear force V is in ver. direction and the axial force P is in hor. direction
 
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 71.3
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 74.0
[kips]

Single Bolt Shear Strength


Bolt shear stress
bolt grade
 = A325-X
Fnv
 = 68.0
[ksi]
AISC 15th  Table J3.2
bolt dia db
 = 0.875
[in]
bolt area Ab
 = 0.601
[in2]

Single bolt shear strength
Rn-bolt
 = 2 x Fnv Ab
 = 81.8
[kips]
AISC 15th  Eq J3-1
Bolt Bearing/TearOut Strength on Plate



Bolt hole diameter
bolt dia db
 = 78
[in]
bolt hole dia dh
 = 1516
[in]
AISC 15th  Table J3.3
Bolt spacing & edge distance
spacing Ls
 = 3.000
[in]
edge distance Le
 = 2.000
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate thickness
t
 = 0.650
[in]

Interior Bolt



Bolt hole edge clear distance
Lc
 = Ls - dh
 = 2.063
[in]

Bolt tear out/bearing strength
Rn-t&b-in
 = 1.2 Lc t Fu ≤ 2.4 db t Fu
AISC 15th  Eq J3-6a
 = 104.6 ≤ 88.7
 = 88.7
[kips]

Bolt strength at interior
Rn-in
 = min ( Rn-t&b-in , Rn-bolt )
 = 81.8
[kips]

Edge Bolt



Bolt hole edge clear distance
Lc
 = Le - dh / 2
 = 1.531
[in]

Bolt tear out/bearing strength
Rn-t&b-ed
 = 1.2 Lc t Fu ≤ 2.4 db t Fu
AISC 15th  Eq J3-6a
 = 77.6 ≤ 88.7
 = 77.6
[kips]

Bolt strength at edge
Rn-ed
 = min ( Rn-t&b-ed , Rn-bolt )
 = 77.6
[kips]



Number of bolt
interior nin
 = 6
edge ned
 = 6

 
Bolt group eccentricity coefficient
Cec
 = from calc in above section
 = 0.672

 
Bolt bearing strength for all bolts
Rn
 = (nin Rn-in + ned Rn-ed ) Cec
 = 642.8
[kips]

Required shear strength
Vu
 = 
 = 74.0
[kips]

Bolt resistance factor-LRFD
φ
 = 0.75
AISC 15th  J3-10
φ Rn
 = 
 = 482.1
[kips]

ratio
 = 0.15
 > Vu
OK
 
 
Beam Web - Outer Side Bolt Group Eccentricity - Shear + Axial
 
Shear V - from user input, beam end shear reaction caused by gravity load only
Axial  P -  from gusset interface forces calc , beam member axial load Pbm
ex         - hor distance from the gusset-beam weld line CG point to the beam splice outer side bolt group CG point
 
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 71.3
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 74.0
[kips]

Resultant force to ver Y axis angle
θ
 = tan-1 (P / V)
 = 74.41
[°]



Bolt group row and column
bolt row nr
 = 6
bolt col nc
 = 2

Bolt row/column spacing
bolt row sr
 = 3.000
[in]
bolt col sc
 = 3.000
[in]

 
Shear force to bolt group CG ecc
ex
 = 
 = 20.125
[in]

 
Shear force to ver Y axis angle
θ
 = 
 = 74.41
[°]

 
Bolt group coefficient C
C
 = from AISC 15th  Table 7-6 ~ 7-13
 = 6.489

Bolt group eccentricity coefficient
Cec
 = C / ( nr x nc )
 = 0.541

 
Beam Web - Outer Side Bolt Group - Bolt Shear
ratio = 74.0 / 398.2
0.19
PASS
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 71.3
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 74.0
[kips]



Bolt shear stress
bolt grade
 = A325-X
Fnv
 = 68.0
[ksi]
AISC 15th  Table J3.2
bolt dia db
 = 0.875
[in]
bolt area Ab
 = 0.601
[in2]

Number of bolt carried shear
ns
 = 12.0
shear plane m
 = 2

Bolt group eccentricity coefficient
Cec
 = from 'Bolt Group Eccentricity' calc
 = 0.541

Required shear strength
Vu
 = 
 = 74.0
[kips]

Bolt shear strength
Rn
 = Fnv Ab ns m Cec
 = 530.9
[kips]
AISC 15th  Eq J3-1
Bolt resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J3-1
φ Rn
 = 
 = 398.2
[kips]

ratio
 = 0.19
 > Vu
OK
 
Beam Web - Outer Side Bolt Group - Bolt Bearing
ratio = 74.0 / 388.1
0.19
PASS
The bolt group is oriented so that the shear force V is in ver. direction and the axial force P is in hor. direction
 
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 71.3
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 74.0
[kips]

Single Bolt Shear Strength


Bolt shear stress
bolt grade
 = A325-X
Fnv
 = 68.0
[ksi]
AISC 15th  Table J3.2
bolt dia db
 = 0.875
[in]
bolt area Ab
 = 0.601
[in2]

Single bolt shear strength
Rn-bolt
 = 2 x Fnv Ab
 = 81.8
[kips]
AISC 15th  Eq J3-1
Bolt Bearing/TearOut Strength on Plate



Bolt hole diameter
bolt dia db
 = 78
[in]
bolt hole dia dh
 = 1516
[in]
AISC 15th  Table J3.3
Bolt spacing & edge distance
spacing Ls
 = 3.000
[in]
edge distance Le
 = 2.000
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate thickness
t
 = 0.650
[in]

Interior Bolt



Bolt hole edge clear distance
Lc
 = Ls - dh
 = 2.063
[in]

Bolt tear out/bearing strength
Rn-t&b-in
 = 1.2 Lc t Fu ≤ 2.4 db t Fu
AISC 15th  Eq J3-6a
 = 104.6 ≤ 88.7
 = 88.7
[kips]

Bolt strength at interior
Rn-in
 = min ( Rn-t&b-in , Rn-bolt )
 = 81.8
[kips]

Edge Bolt



Bolt hole edge clear distance
Lc
 = Le - dh / 2
 = 1.531
[in]

Bolt tear out/bearing strength
Rn-t&b-ed
 = 1.2 Lc t Fu ≤ 2.4 db t Fu
AISC 15th  Eq J3-6a
 = 77.6 ≤ 88.7
 = 77.6
[kips]

Bolt strength at edge
Rn-ed
 = min ( Rn-t&b-ed , Rn-bolt )
 = 77.6
[kips]



Number of bolt
interior nin
 = 6
edge ned
 = 6

 
Bolt group eccentricity coefficient
Cec
 = from calc in above section
 = 0.541

 
Bolt bearing strength for all bolts
Rn
 = (nin Rn-in + ned Rn-ed ) Cec
 = 517.5
[kips]

Required shear strength
Vu
 = 
 = 74.0
[kips]

Bolt resistance factor-LRFD
φ
 = 0.75
AISC 15th  J3-10
φ Rn
 = 
 = 388.1
[kips]

ratio
 = 0.19
 > Vu
OK
 
 
Splice Plate - Outer Side Bolt Group Eccentricity - Shear Only
 
Shear V - from user input, beam end shear reaction caused by gravity load only
ex         - hor distance from column face to the beam splice outer side bolt group CG point
 
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 0.0
[kips]

Resultant force to ver Y axis angle
θ
 = tan-1 (P / V)
 = 0.00
[°]



Bolt group row and column
bolt row nr
 = 6
bolt col nc
 = 2

Bolt row/column spacing
bolt row sr
 = 3.000
[in]
bolt col sc
 = 3.000
[in]

 
Shear force to bolt group CG ecc
ex
 = 
 = 34.500
[in]

 
Shear force to ver Y axis angle
θ
 = 
 = 0.00
[°]

 
Bolt group coefficient C
C
 = from AISC 15th  Table 7-6 ~ 7-13
 = 1.552

Bolt group eccentricity coefficient
Cec
 = C / ( nr x nc )
 = 0.129

 
Splice Plate - Outer Side Bolt Group - Bolt Bearing
ratio = 10.0 / 47.5
0.21
PASS
The bolt group is oriented so that the shear force V is in ver. direction and the axial force P is in hor. direction
 
Bolt group forces
shear V
 = 10.0
[kips]
axial P
 = 0.0
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 10.0
[kips]

Single Bolt Shear Strength


Bolt shear stress
bolt grade
 = A325-X
Fnv
 = 68.0
[ksi]
AISC 15th  Table J3.2
bolt dia db
 = 0.875
[in]
bolt area Ab
 = 0.601
[in2]

Single bolt shear strength
Rn-bolt
 = Fnv Ab
 = 40.9
[kips]
AISC 15th  Eq J3-1
Bolt Bearing/TearOut Strength on Plate



Bolt hole diameter
bolt dia db
 = 78
[in]
bolt hole dia dh
 = 1516
[in]
AISC 15th  Table J3.3
Bolt spacing
spacing Ls
 = 3.000
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate thickness
t
 = 0.375
[in]

Interior Bolt



Bolt hole edge clear distance
Lc
 = Ls - dh
 = 2.063
[in]

Bolt tear out/bearing strength
Rn-t&b-in
 = 1.2 Lc t Fu ≤ 2.4 db t m Fu
AISC 15th  Eq J3-6a
 = 60.3 ≤ 51.2
 = 51.2
[kips]

Bolt strength at interior
Rn-in
 = min ( Rn-t&b-in , Rn-bolt )
 = 40.9
[kips]



Number of bolt
interior nin
 = 12

 
Bolt group eccentricity coefficient
Cec
 = from calc in above section
 = 0.129

 
Bolt bearing strength for all bolts
Rn
 = (nin Rn-in ) Cec
 = 63.3
[kips]

Required shear strength
Vu
 = 
 = 10.0
[kips]

Bolt resistance factor-LRFD
φ
 = 0.75
AISC 15th  J3-10
φ Rn
 = 
 = 47.5
[kips]

ratio
 = 0.21
 > Vu
OK
 
 
Splice Plate - Compression Buckling
ratio = 35.7 / 256.1
0.14
PASS
Plate Compression Check



Plate size
width bp
 = 19.000
[in]
thickness tp
 = 0.375
[in]

Fy
 = 50.0
[ksi]
E
 = 29000
[ksi]

Plate gross area in compression
Ag
 = bp tp
 = 7.125
[in2]



Plate radius of gyration
r
 = tp / 12
 = 0.108
[in]

Plate effective length factor
K
 = 
 = 1.20
AISC 15th  Table C-A-7.1
Plate unbraced length
Lu
 = 
 = 5.000
[in]

Plate slenderness
KL/r
 = 1.20 x Lu  / r
 = 55.43



when  
KL/r
  >  25 , use Chapter E
AISC 15th  J4.4 (b)
Elastic buckling stress
Fe
 = 
π2 E/( KL/r )2
 = 93.17
[ksi]
AISC 15th  Eq E3-4
when  
KL/r
  ≤ 4.71 (
E/Fy
) 0.5 = 113.43
AISC 15th  E3 (a)
Critical stress
Fcr
 = 0.658 ( Fy / Fe )   Fy
 = 39.94
[ksi]
AISC 15th  Eq E3-2


Plate compression required
Pu
 = 0.5 x beam axial compression P
 = 35.7
[kips]

Plate compression provided
Rn
 = Fcr x Ag
 = 284.6
[kips]
AISC 15th  Eq E3-1
Resistance factor-LRFD
φ
 = 0.90
AISC 15th  E1
φ Rn
 = 
 = 256.1
[kips]

ratio
 = 0.14
 > Pu
OK
 
Splice Plate - Shear Yielding
ratio = 19.9 / 427.5
0.05
PASS
Splice Plate Shear Yielding



Plate size
width bp
 = 19.000
[in]
thickness tp
 = 0.375
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Agv
 = bp tp x 2 side
 = 14.250
[in2]

Shear force required
Vu
 = 
 = 19.9
[kips]

Plate shear yielding strength
Rn
 = 0.6 Fy Agv
 = 427.5
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 427.5
[kips]

ratio
 = 0.05
 > Vu
OK
 
Splice Plate - Flexural Yielding
ratio = 54.73 / 253.83
0.22
PASS
Plate width & thick
width bp
 = 19.000
[in]
thick tp
 = 0.375
[in]

yield Fy
 = 50.0
[ksi]

Beam end shear reaction caused by gravity load only
V
 = from user input
 = 19.9
[kips]

 
Ecc from column face to outer bolt group first bolt line
e
 = 
 = 33.000
[in]

Flexural strength required
Mr
 = V x e
 = 54.73
[kip-ft]

 
Shear plate - plastic modulus
Zp
 = ( bp x t2p ) / 4 x 2 side
 = 67.69
[in3]

Flexural strength available
Mc
 = φ Fy Zp     φ=0.90
 = 253.83
[kip-ft]

ratio
 = 0.22
 > Mr
OK
 
Splice Plate - Shear Rupture
ratio = 10.0 / 142.6
0.07
PASS
Plate Shear Rupture Check



Bolt hole diameter
bolt dia db
 = 78
[in]
bolt hole dia dh
 = 1
[in]
AISC 15th  B4.3b
Number of bolt
n
 = 6

Plate size
width bp
 = 19.000
[in]
thickness tp
 = 0.375
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in shear
Anv
 = ( bp - n dh ) tp
 = 4.875
[in2]

Shear force required
Vu
 = 
 = 10.0
[kips]

Plate shear rupture strength
Rn
 = 0.6 Fu Anv
 = 190.1
[kips]
AISC 15th  Eq J4-4
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-4
φ Rn
 = 
 = 142.6
[kips]

ratio
 = 0.07
 > Vu
OK
 
Splice Plate - Flexural Rupture
ratio = 27.36 / 96.36
0.28
PASS


Plate An and Znet Calc

Bolt hole diameter
bolt dia db
 = 78
[in]
bolt hole dia dh
 = 1
[in]
AISC 15th  B4.3b
Number of bolt
n
 = 6

Plate size
width bp
 = 19.000
[in]
thickness tp
 = 0.375
[in]

Plate net area
An
 = ( bp - n dh ) tp
 = 4.875
[in2]

Plate net plastic sect modulus
Znet
 = 
 = 23.72
[in3]

Plate net elastic sect modulus
Snet
 = 
 = 16.33
[in3]



Plate width & thick
width bp
 = 19.000
[in]
thick tp
 = 0.375
[in]

Fu
 = 65.0
[ksi]

Beam end shear reaction caused by gravity load only
V
 = from user input, x 0.5 for 2 side plate
 = 10.0
[kips]

 
Ecc from column face to outer bolt group first bolt line
e
 = 
 = 33.000
[in]

Flexural strength required
Mr
 = V x e
 = 27.36
[kip-ft]

 
Shear plate - net plastic modulus
Znet
 = from above calc
 = 23.72
[in3]

Flexural strength available
Mc
 = φ Fu Znet     φ=0.75
 = 96.36
[kip-ft]

ratio
 = 0.28
 > Mr
OK
 
 
 
Seismic SCBF LC2
shear V = 19.9 kips     axial P = 71.6 kips (C)
ratio = 0.28
PASS

Beam Web - Outer Side Bolt Group Eccentricity - Shear Only
 
Shear V - from user input, beam end shear reaction caused by gravity load only
ex         - hor distance from column face to the beam splice outer side bolt group CG point
 
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 0.0
[kips]

Resultant force to ver Y axis angle
θ
 = tan-1 (P / V)
 = 0.00
[°]



Bolt group row and column
bolt row nr
 = 6
bolt col nc
 = 2

Bolt row/column spacing
bolt row sr
 = 3.000
[in]
bolt col sc
 = 3.000
[in]

 
Shear force to bolt group CG ecc
ex
 = 
 = 34.500
[in]

 
Shear force to ver Y axis angle
θ
 = 
 = 0.00
[°]

 
Bolt group coefficient C
C
 = from AISC 15th  Table 7-6 ~ 7-13
 = 1.552

Bolt group eccentricity coefficient
Cec
 = C / ( nr x nc )
 = 0.129

 
Beam Web - Outer Side Bolt Group - Bolt Shear
ratio = 19.9 / 94.9
0.21
PASS
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 0.0
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 19.9
[kips]



Bolt shear stress
bolt grade
 = A325-X
Fnv
 = 68.0
[ksi]
AISC 15th  Table J3.2
bolt dia db
 = 0.875
[in]
bolt area Ab
 = 0.601
[in2]

Number of bolt carried shear
ns
 = 12.0
shear plane m
 = 2

Bolt group eccentricity coefficient
Cec
 = from 'Bolt Group Eccentricity' calc
 = 0.129

Required shear strength
Vu
 = 
 = 19.9
[kips]

Bolt shear strength
Rn
 = Fnv Ab ns m Cec
 = 126.6
[kips]
AISC 15th  Eq J3-1
Bolt resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J3-1
φ Rn
 = 
 = 94.9
[kips]

ratio
 = 0.21
 > Vu
OK
 
Beam Web - Outer Side Bolt Group - Bolt Bearing
ratio = 19.9 / 94.9
0.21
PASS
The bolt group is oriented so that the shear force V is in ver. direction and the axial force P is in hor. direction
 
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 0.0
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 19.9
[kips]

Single Bolt Shear Strength


Bolt shear stress
bolt grade
 = A325-X
Fnv
 = 68.0
[ksi]
AISC 15th  Table J3.2
bolt dia db
 = 0.875
[in]
bolt area Ab
 = 0.601
[in2]

Single bolt shear strength
Rn-bolt
 = 2 x Fnv Ab
 = 81.8
[kips]
AISC 15th  Eq J3-1
Bolt Bearing/TearOut Strength on Plate



Bolt hole diameter
bolt dia db
 = 78
[in]
bolt hole dia dh
 = 1516
[in]
AISC 15th  Table J3.3
Bolt spacing
spacing Ls
 = 3.000
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate thickness
t
 = 0.650
[in]

Interior Bolt



Bolt hole edge clear distance
Lc
 = Ls - dh
 = 2.063
[in]

Bolt tear out/bearing strength
Rn-t&b-in
 = 1.2 Lc t Fu ≤ 2.4 db t m Fu
AISC 15th  Eq J3-6a
 = 104.6 ≤ 88.7
 = 88.7
[kips]

Bolt strength at interior
Rn-in
 = min ( Rn-t&b-in , Rn-bolt )
 = 81.8
[kips]



Number of bolt
interior nin
 = 12

 
Bolt group eccentricity coefficient
Cec
 = from calc in above section
 = 0.129

 
Bolt bearing strength for all bolts
Rn
 = (nin Rn-in ) Cec
 = 126.6
[kips]

Required shear strength
Vu
 = 
 = 19.9
[kips]

Bolt resistance factor-LRFD
φ
 = 0.75
AISC 15th  J3-10
φ Rn
 = 
 = 94.9
[kips]

ratio
 = 0.21
 > Vu
OK
 
 
Beam Web - Inner Side Bolt Group Eccentricity - Shear Only
 
Shear V - from user input, beam end shear reaction caused by gravity load only
ex         - hor distance from column face to the beam splice inner side bolt group CG point
 
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 0.0
[kips]

Resultant force to ver Y axis angle
θ
 = tan-1 (P / V)
 = 0.00
[°]



Bolt group row and column
bolt row nr
 = 6
bolt col nc
 = 2

Bolt row/column spacing
bolt row sr
 = 3.000
[in]
bolt col sc
 = 3.000
[in]

 
Shear force to bolt group CG ecc
ex
 = 
 = 26.500
[in]

 
Shear force to ver Y axis angle
θ
 = 
 = 0.00
[°]

 
Bolt group coefficient C
C
 = from AISC 15th  Table 7-6 ~ 7-13
 = 2.007

Bolt group eccentricity coefficient
Cec
 = C / ( nr x nc )
 = 0.167

 
Beam Web - Inner Side Bolt Group - Bolt Shear
ratio = 19.9 / 122.9
0.16
PASS
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 0.0
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 19.9
[kips]



Bolt shear stress
bolt grade
 = A325-X
Fnv
 = 68.0
[ksi]
AISC 15th  Table J3.2
bolt dia db
 = 0.875
[in]
bolt area Ab
 = 0.601
[in2]

Number of bolt carried shear
ns
 = 12.0
shear plane m
 = 2

Bolt group eccentricity coefficient
Cec
 = from 'Bolt Group Eccentricity' calc
 = 0.167

Required shear strength
Vu
 = 
 = 19.9
[kips]

Bolt shear strength
Rn
 = Fnv Ab ns m Cec
 = 163.9
[kips]
AISC 15th  Eq J3-1
Bolt resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J3-1
φ Rn
 = 
 = 122.9
[kips]

ratio
 = 0.16
 > Vu
OK
 
Beam Web - Inner Side Bolt Group - Bolt Bearing
ratio = 19.9 / 122.9
0.16
PASS
The bolt group is oriented so that the shear force V is in ver. direction and the axial force P is in hor. direction
 
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 0.0
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 19.9
[kips]

Single Bolt Shear Strength


Bolt shear stress
bolt grade
 = A325-X
Fnv
 = 68.0
[ksi]
AISC 15th  Table J3.2
bolt dia db
 = 0.875
[in]
bolt area Ab
 = 0.601
[in2]

Single bolt shear strength
Rn-bolt
 = 2 x Fnv Ab
 = 81.8
[kips]
AISC 15th  Eq J3-1
Bolt Bearing/TearOut Strength on Plate



Bolt hole diameter
bolt dia db
 = 78
[in]
bolt hole dia dh
 = 1516
[in]
AISC 15th  Table J3.3
Bolt spacing
spacing Ls
 = 3.000
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate thickness
t
 = 0.650
[in]

Interior Bolt



Bolt hole edge clear distance
Lc
 = Ls - dh
 = 2.063
[in]

Bolt tear out/bearing strength
Rn-t&b-in
 = 1.2 Lc t Fu ≤ 2.4 db t m Fu
AISC 15th  Eq J3-6a
 = 104.6 ≤ 88.7
 = 88.7
[kips]

Bolt strength at interior
Rn-in
 = min ( Rn-t&b-in , Rn-bolt )
 = 81.8
[kips]



Number of bolt
interior nin
 = 12

 
Bolt group eccentricity coefficient
Cec
 = from calc in above section
 = 0.167

 
Bolt bearing strength for all bolts
Rn
 = (nin Rn-in ) Cec
 = 163.9
[kips]

Required shear strength
Vu
 = 
 = 19.9
[kips]

Bolt resistance factor-LRFD
φ
 = 0.75
AISC 15th  J3-10
φ Rn
 = 
 = 122.9
[kips]

ratio
 = 0.16
 > Vu
OK
 
 
Beam Web - Inner Side Bolt Group Eccentricity - Shear + Axial
 
Shear V - from user input, beam end shear reaction caused by gravity load only
Axial  P -  from gusset interface forces calc , beam member axial load Pbm
ex         - hor distance from the gusset-beam weld line CG point to the beam splice inner side bolt group CG point
 
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 71.6
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 74.3
[kips]

Resultant force to ver Y axis angle
θ
 = tan-1 (P / V)
 = 74.47
[°]



Bolt group row and column
bolt row nr
 = 6
bolt col nc
 = 2

Bolt row/column spacing
bolt row sr
 = 3.000
[in]
bolt col sc
 = 3.000
[in]

 
Shear force to bolt group CG ecc
ex
 = 
 = 12.125
[in]

 
Shear force to ver Y axis angle
θ
 = 
 = 74.47
[°]

 
Bolt group coefficient C
C
 = from AISC 15th  Table 7-6 ~ 7-13
 = 8.077

Bolt group eccentricity coefficient
Cec
 = C / ( nr x nc )
 = 0.673

 
Beam Web - Inner Side Bolt Group - Bolt Shear
ratio = 74.3 / 495.3
0.15
PASS
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 71.6
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 74.3
[kips]



Bolt shear stress
bolt grade
 = A325-X
Fnv
 = 68.0
[ksi]
AISC 15th  Table J3.2
bolt dia db
 = 0.875
[in]
bolt area Ab
 = 0.601
[in2]

Number of bolt carried shear
ns
 = 12.0
shear plane m
 = 2

Bolt group eccentricity coefficient
Cec
 = from 'Bolt Group Eccentricity' calc
 = 0.673

Required shear strength
Vu
 = 
 = 74.3
[kips]

Bolt shear strength
Rn
 = Fnv Ab ns m Cec
 = 660.5
[kips]
AISC 15th  Eq J3-1
Bolt resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J3-1
φ Rn
 = 
 = 495.3
[kips]

ratio
 = 0.15
 > Vu
OK
 
Beam Web - Inner Side Bolt Group - Bolt Bearing
ratio = 74.3 / 482.8
0.15
PASS
The bolt group is oriented so that the shear force V is in ver. direction and the axial force P is in hor. direction
 
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 71.6
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 74.3
[kips]

Single Bolt Shear Strength


Bolt shear stress
bolt grade
 = A325-X
Fnv
 = 68.0
[ksi]
AISC 15th  Table J3.2
bolt dia db
 = 0.875
[in]
bolt area Ab
 = 0.601
[in2]

Single bolt shear strength
Rn-bolt
 = 2 x Fnv Ab
 = 81.8
[kips]
AISC 15th  Eq J3-1
Bolt Bearing/TearOut Strength on Plate



Bolt hole diameter
bolt dia db
 = 78
[in]
bolt hole dia dh
 = 1516
[in]
AISC 15th  Table J3.3
Bolt spacing & edge distance
spacing Ls
 = 3.000
[in]
edge distance Le
 = 2.000
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate thickness
t
 = 0.650
[in]

Interior Bolt



Bolt hole edge clear distance
Lc
 = Ls - dh
 = 2.063
[in]

Bolt tear out/bearing strength
Rn-t&b-in
 = 1.2 Lc t Fu ≤ 2.4 db t Fu
AISC 15th  Eq J3-6a
 = 104.6 ≤ 88.7
 = 88.7
[kips]

Bolt strength at interior
Rn-in
 = min ( Rn-t&b-in , Rn-bolt )
 = 81.8
[kips]

Edge Bolt



Bolt hole edge clear distance
Lc
 = Le - dh / 2
 = 1.531
[in]

Bolt tear out/bearing strength
Rn-t&b-ed
 = 1.2 Lc t Fu ≤ 2.4 db t Fu
AISC 15th  Eq J3-6a
 = 77.6 ≤ 88.7
 = 77.6
[kips]

Bolt strength at edge
Rn-ed
 = min ( Rn-t&b-ed , Rn-bolt )
 = 77.6
[kips]



Number of bolt
interior nin
 = 6
edge ned
 = 6

 
Bolt group eccentricity coefficient
Cec
 = from calc in above section
 = 0.673

 
Bolt bearing strength for all bolts
Rn
 = (nin Rn-in + ned Rn-ed ) Cec
 = 643.7
[kips]

Required shear strength
Vu
 = 
 = 74.3
[kips]

Bolt resistance factor-LRFD
φ
 = 0.75
AISC 15th  J3-10
φ Rn
 = 
 = 482.8
[kips]

ratio
 = 0.15
 > Vu
OK
 
 
Beam Web - Outer Side Bolt Group Eccentricity - Shear + Axial
 
Shear V - from user input, beam end shear reaction caused by gravity load only
Axial  P -  from gusset interface forces calc , beam member axial load Pbm
ex         - hor distance from the gusset-beam weld line CG point to the beam splice outer side bolt group CG point
 
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 71.6
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 74.3
[kips]

Resultant force to ver Y axis angle
θ
 = tan-1 (P / V)
 = 74.47
[°]



Bolt group row and column
bolt row nr
 = 6
bolt col nc
 = 2

Bolt row/column spacing
bolt row sr
 = 3.000
[in]
bolt col sc
 = 3.000
[in]

 
Shear force to bolt group CG ecc
ex
 = 
 = 20.125
[in]

 
Shear force to ver Y axis angle
θ
 = 
 = 74.47
[°]

 
Bolt group coefficient C
C
 = from AISC 15th  Table 7-6 ~ 7-13
 = 6.501

Bolt group eccentricity coefficient
Cec
 = C / ( nr x nc )
 = 0.542

 
Beam Web - Outer Side Bolt Group - Bolt Shear
ratio = 74.3 / 398.9
0.19
PASS
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 71.6
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 74.3
[kips]



Bolt shear stress
bolt grade
 = A325-X
Fnv
 = 68.0
[ksi]
AISC 15th  Table J3.2
bolt dia db
 = 0.875
[in]
bolt area Ab
 = 0.601
[in2]

Number of bolt carried shear
ns
 = 12.0
shear plane m
 = 2

Bolt group eccentricity coefficient
Cec
 = from 'Bolt Group Eccentricity' calc
 = 0.542

Required shear strength
Vu
 = 
 = 74.3
[kips]

Bolt shear strength
Rn
 = Fnv Ab ns m Cec
 = 531.9
[kips]
AISC 15th  Eq J3-1
Bolt resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J3-1
φ Rn
 = 
 = 398.9
[kips]

ratio
 = 0.19
 > Vu
OK
 
Beam Web - Outer Side Bolt Group - Bolt Bearing
ratio = 74.3 / 388.8
0.19
PASS
The bolt group is oriented so that the shear force V is in ver. direction and the axial force P is in hor. direction
 
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 71.6
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 74.3
[kips]

Single Bolt Shear Strength


Bolt shear stress
bolt grade
 = A325-X
Fnv
 = 68.0
[ksi]
AISC 15th  Table J3.2
bolt dia db
 = 0.875
[in]
bolt area Ab
 = 0.601
[in2]

Single bolt shear strength
Rn-bolt
 = 2 x Fnv Ab
 = 81.8
[kips]
AISC 15th  Eq J3-1
Bolt Bearing/TearOut Strength on Plate



Bolt hole diameter
bolt dia db
 = 78
[in]
bolt hole dia dh
 = 1516
[in]
AISC 15th  Table J3.3
Bolt spacing & edge distance
spacing Ls
 = 3.000
[in]
edge distance Le
 = 2.000
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate thickness
t
 = 0.650
[in]

Interior Bolt



Bolt hole edge clear distance
Lc
 = Ls - dh
 = 2.063
[in]

Bolt tear out/bearing strength
Rn-t&b-in
 = 1.2 Lc t Fu ≤ 2.4 db t Fu
AISC 15th  Eq J3-6a
 = 104.6 ≤ 88.7
 = 88.7
[kips]

Bolt strength at interior
Rn-in
 = min ( Rn-t&b-in , Rn-bolt )
 = 81.8
[kips]

Edge Bolt



Bolt hole edge clear distance
Lc
 = Le - dh / 2
 = 1.531
[in]

Bolt tear out/bearing strength
Rn-t&b-ed
 = 1.2 Lc t Fu ≤ 2.4 db t Fu
AISC 15th  Eq J3-6a
 = 77.6 ≤ 88.7
 = 77.6
[kips]

Bolt strength at edge
Rn-ed
 = min ( Rn-t&b-ed , Rn-bolt )
 = 77.6
[kips]



Number of bolt
interior nin
 = 6
edge ned
 = 6

 
Bolt group eccentricity coefficient
Cec
 = from calc in above section
 = 0.542

 
Bolt bearing strength for all bolts
Rn
 = (nin Rn-in + ned Rn-ed ) Cec
 = 518.4
[kips]

Required shear strength
Vu
 = 
 = 74.3
[kips]

Bolt resistance factor-LRFD
φ
 = 0.75
AISC 15th  J3-10
φ Rn
 = 
 = 388.8
[kips]

ratio
 = 0.19
 > Vu
OK
 
 
Splice Plate - Outer Side Bolt Group Eccentricity - Shear Only
 
Shear V - from user input, beam end shear reaction caused by gravity load only
ex         - hor distance from column face to the beam splice outer side bolt group CG point
 
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 0.0
[kips]

Resultant force to ver Y axis angle
θ
 = tan-1 (P / V)
 = 0.00
[°]



Bolt group row and column
bolt row nr
 = 6
bolt col nc
 = 2

Bolt row/column spacing
bolt row sr
 = 3.000
[in]
bolt col sc
 = 3.000
[in]

 
Shear force to bolt group CG ecc
ex
 = 
 = 34.500
[in]

 
Shear force to ver Y axis angle
θ
 = 
 = 0.00
[°]

 
Bolt group coefficient C
C
 = from AISC 15th  Table 7-6 ~ 7-13
 = 1.552

Bolt group eccentricity coefficient
Cec
 = C / ( nr x nc )
 = 0.129

 
Splice Plate - Outer Side Bolt Group - Bolt Bearing
ratio = 10.0 / 47.5
0.21
PASS
The bolt group is oriented so that the shear force V is in ver. direction and the axial force P is in hor. direction
 
Bolt group forces
shear V
 = 10.0
[kips]
axial P
 = 0.0
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 10.0
[kips]

Single Bolt Shear Strength


Bolt shear stress
bolt grade
 = A325-X
Fnv
 = 68.0
[ksi]
AISC 15th  Table J3.2
bolt dia db
 = 0.875
[in]
bolt area Ab
 = 0.601
[in2]

Single bolt shear strength
Rn-bolt
 = Fnv Ab
 = 40.9
[kips]
AISC 15th  Eq J3-1
Bolt Bearing/TearOut Strength on Plate



Bolt hole diameter
bolt dia db
 = 78
[in]
bolt hole dia dh
 = 1516
[in]
AISC 15th  Table J3.3
Bolt spacing
spacing Ls
 = 3.000
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate thickness
t
 = 0.375
[in]

Interior Bolt



Bolt hole edge clear distance
Lc
 = Ls - dh
 = 2.063
[in]

Bolt tear out/bearing strength
Rn-t&b-in
 = 1.2 Lc t Fu ≤ 2.4 db t m Fu
AISC 15th  Eq J3-6a
 = 60.3 ≤ 51.2
 = 51.2
[kips]

Bolt strength at interior
Rn-in
 = min ( Rn-t&b-in , Rn-bolt )
 = 40.9
[kips]



Number of bolt
interior nin
 = 12

 
Bolt group eccentricity coefficient
Cec
 = from calc in above section
 = 0.129

 
Bolt bearing strength for all bolts
Rn
 = (nin Rn-in ) Cec
 = 63.3
[kips]

Required shear strength
Vu
 = 
 = 10.0
[kips]

Bolt resistance factor-LRFD
φ
 = 0.75
AISC 15th  J3-10
φ Rn
 = 
 = 47.5
[kips]

ratio
 = 0.21
 > Vu
OK
 
 
Splice Plate - Compression Buckling
ratio = 35.8 / 256.1
0.14
PASS
Plate Compression Check



Plate size
width bp
 = 19.000
[in]
thickness tp
 = 0.375
[in]

Fy
 = 50.0
[ksi]
E
 = 29000
[ksi]

Plate gross area in compression
Ag
 = bp tp
 = 7.125
[in2]



Plate radius of gyration
r
 = tp / 12
 = 0.108
[in]

Plate effective length factor
K
 = 
 = 1.20
AISC 15th  Table C-A-7.1
Plate unbraced length
Lu
 = 
 = 5.000
[in]

Plate slenderness
KL/r
 = 1.20 x Lu  / r
 = 55.43



when  
KL/r
  >  25 , use Chapter E
AISC 15th  J4.4 (b)
Elastic buckling stress
Fe
 = 
π2 E/( KL/r )2
 = 93.17
[ksi]
AISC 15th  Eq E3-4
when  
KL/r
  ≤ 4.71 (
E/Fy
) 0.5 = 113.43
AISC 15th  E3 (a)
Critical stress
Fcr
 = 0.658 ( Fy / Fe )   Fy
 = 39.94
[ksi]
AISC 15th  Eq E3-2


Plate compression required
Pu
 = 0.5 x beam axial compression P
 = 35.8
[kips]

Plate compression provided
Rn
 = Fcr x Ag
 = 284.6
[kips]
AISC 15th  Eq E3-1
Resistance factor-LRFD
φ
 = 0.90
AISC 15th  E1
φ Rn
 = 
 = 256.1
[kips]

ratio
 = 0.14
 > Pu
OK
 
Splice Plate - Shear Yielding
ratio = 19.9 / 427.5
0.05
PASS
Splice Plate Shear Yielding



Plate size
width bp
 = 19.000
[in]
thickness tp
 = 0.375
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Agv
 = bp tp x 2 side
 = 14.250
[in2]

Shear force required
Vu
 = 
 = 19.9
[kips]

Plate shear yielding strength
Rn
 = 0.6 Fy Agv
 = 427.5
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 427.5
[kips]

ratio
 = 0.05
 > Vu
OK
 
Splice Plate - Flexural Yielding
ratio = 54.73 / 253.83
0.22
PASS
Plate width & thick
width bp
 = 19.000
[in]
thick tp
 = 0.375
[in]

yield Fy
 = 50.0
[ksi]

Beam end shear reaction caused by gravity load only
V
 = from user input
 = 19.9
[kips]

 
Ecc from column face to outer bolt group first bolt line
e
 = 
 = 33.000
[in]

Flexural strength required
Mr
 = V x e
 = 54.73
[kip-ft]

 
Shear plate - plastic modulus
Zp
 = ( bp x t2p ) / 4 x 2 side
 = 67.69
[in3]

Flexural strength available
Mc
 = φ Fy Zp     φ=0.90
 = 253.83
[kip-ft]

ratio
 = 0.22
 > Mr
OK
 
Splice Plate - Shear Rupture
ratio = 10.0 / 142.6
0.07
PASS
Plate Shear Rupture Check



Bolt hole diameter
bolt dia db
 = 78
[in]
bolt hole dia dh
 = 1
[in]
AISC 15th  B4.3b
Number of bolt
n
 = 6

Plate size
width bp
 = 19.000
[in]
thickness tp
 = 0.375
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in shear
Anv
 = ( bp - n dh ) tp
 = 4.875
[in2]

Shear force required
Vu
 = 
 = 10.0
[kips]

Plate shear rupture strength
Rn
 = 0.6 Fu Anv
 = 190.1
[kips]
AISC 15th  Eq J4-4
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-4
φ Rn
 = 
 = 142.6
[kips]

ratio
 = 0.07
 > Vu
OK
 
Splice Plate - Flexural Rupture
ratio = 27.36 / 96.36
0.28
PASS


Plate An and Znet Calc

Bolt hole diameter
bolt dia db
 = 78
[in]
bolt hole dia dh
 = 1
[in]
AISC 15th  B4.3b
Number of bolt
n
 = 6

Plate size
width bp
 = 19.000
[in]
thickness tp
 = 0.375
[in]

Plate net area
An
 = ( bp - n dh ) tp
 = 4.875
[in2]

Plate net plastic sect modulus
Znet
 = 
 = 23.72
[in3]

Plate net elastic sect modulus
Snet
 = 
 = 16.33
[in3]



Plate width & thick
width bp
 = 19.000
[in]
thick tp
 = 0.375
[in]

Fu
 = 65.0
[ksi]

Beam end shear reaction caused by gravity load only
V
 = from user input, x 0.5 for 2 side plate
 = 10.0
[kips]

 
Ecc from column face to outer bolt group first bolt line
e
 = 
 = 33.000
[in]

Flexural strength required
Mr
 = V x e
 = 27.36
[kip-ft]

 
Shear plate - net plastic modulus
Znet
 = from above calc
 = 23.72
[in3]

Flexural strength available
Mc
 = φ Fu Znet     φ=0.75
 = 96.36
[kip-ft]

ratio
 = 0.28
 > Mr
OK
 
 

 
Seismic - SCBF  LC3 & LC4  Gusset Interface Forces Calc
 

 
 


Brace - SCBF   Load Case LC3


 
Top and bottom brace force
Top Ptop
 = -559.7
[kips] (T)
Bot Pbot
 = 157.3
[kips] (C)

Beam end shear & transfer force
Shear Rb
 = 19.9
[kips]
Transfer Ab
 = -27.6
[kips]

 
 


Top Brace Interface Forces


Refer to AISC 15th  Page 13-4 and Fig. 13-2 for all charts and definitions of variables and symbols shown in calculation below
eb
 = 12.350
[in]
ec
 = 6.450
[in]

α
 = 14.000
[in]
β
 = 9.625
[in]

θ
 = 45.0
[°]

K
 = eb tanθ - ec
 = 5.900
[in]
AISC 15th  Eq. 13-16
D
 = tan2 θ + (
α/β
)2
 = 3.116
AISC 15th  Eq. 13-24
K'
 = α ( tan θ +
α/β
)
 = 34.364
AISC 15th  Eq. 13-23
α
 = [ K' tan θ + K (
α/β
)2 ] / D
 = 14.000
[in]
AISC 15th  Eq. 13-21
β
 = ( K' - K tan θ ) / D
 = 8.100
[in]
AISC 15th  Eq. 13-22
r
 = [ ( eb + β ) 2 + ( ec + α ) 2 ]0.5
 = 28.921
[in]
AISC 15th  Eq. 13-6


Brace axial force
Pu
 = from seismic brace force calc
 = -559.7
[kips]
in tension
Gusset to Column Interface Forces

Shear force
Vc
 = ( β / r ) Pu
 = -156.8
[kips]
AISC 15th  Eq. 13-2
Axial force
Hc
 = ( ec / r ) Pu
 = -124.8
[kips]
AISC 15th  Eq. 13-3
Moment
Mc
 = Hc ( β - β )
 = 15.86
[kip-ft]
AISC 15th  Eq. 13-19
Gusset to Beam Interface Forces

Shear force
Hb
 = ( α / r ) Pu
 = -270.9
[kips]
AISC 15th  Eq. 13-5
Axial force
Vb
 = ( eb / r ) Pu
 = -239.0
[kips]
AISC 15th  Eq. 13-4
Moment
Mb
 = Vb ( α - α )
 = 0.00
[kip-ft]
AISC 15th  Eq. 13-17
 


Bottom Brace Interface Forces


Refer to AISC 15th  Page 13-4 and Fig. 13-2 for all charts and definitions of variables and symbols shown in calculation below
eb
 = 12.350
[in]
ec
 = 6.450
[in]

α
 = 14.750
[in]
β
 = 10.375
[in]

θ
 = 45.0
[°]

K
 = eb tanθ - ec
 = 5.900
[in]
AISC 15th  Eq. 13-16
D
 = tan2 θ + (
α/β
)2
 = 3.021
AISC 15th  Eq. 13-24
K'
 = α ( tan θ +
α/β
)
 = 35.720
AISC 15th  Eq. 13-23
α
 = [ K' tan θ + K (
α/β
)2 ] / D
 = 14.750
[in]
AISC 15th  Eq. 13-21
β
 = ( K' - K tan θ ) / D
 = 8.850
[in]
AISC 15th  Eq. 13-22
r
 = [ ( eb + β ) 2 + ( ec + α ) 2 ]0.5
 = 29.981
[in]
AISC 15th  Eq. 13-6


Brace axial force
Pu
 = from seismic brace force calc
 = 157.3
[kips]
in compression
Gusset to Column Interface Forces

Shear force
Vc
 = ( β / r ) Pu
 = 46.4
[kips]
AISC 15th  Eq. 13-2
Axial force
Hc
 = ( ec / r ) Pu
 = 33.8
[kips]
AISC 15th  Eq. 13-3
Moment
Mc
 = Hc ( β - β )
 = -4.30
[kip-ft]
AISC 15th  Eq. 13-19
Gusset to Beam Interface Forces

Shear force
Hb
 = ( α / r ) Pu
 = 77.4
[kips]
AISC 15th  Eq. 13-5
Axial force
Vb
 = ( eb / r ) Pu
 = 64.8
[kips]
AISC 15th  Eq. 13-4
Moment
Mb
 = Vb ( α - α )
 = 0.00
[kip-ft]
AISC 15th  Eq. 13-17
 


Beam to Column Interface Forces


Beam to Column Interface Shear Force
Beam end shear reaction
Rb
 = from user input
 = 19.9
[kips]

Top brace gusset-beam axial force
Vb-top
 = 
 = -239.0
[kips]
AISC 15th  Eq. 13-4
Bot brace gusset-beam axial force
Vb-bot
 = 
 = 64.8
[kips]
AISC 15th  Eq. 13-4
Beam to column shear force
Vb-c
 = Rb + Vb-top - Vb-bot
 = -283.9
[kips]
AISC 15th  Page 13-4
Beam to Column Interface Axial Force
Top brace gusset-column axial force
Hc-top
 = 
 = -124.8
[kips]
AISC 15th  Eq. 13-3
Bot brace gusset-column axial force
Hc-bot
 = 
 = 33.8
[kips]
AISC 15th  Eq. 13-3
Transfer force from adjacent bay
Ab
 = from user input
 = -27.6
[kips]

Beam to column axial force
Pb-c
 = ( Hc-top + Hc-bot ) x -1 - Ab
 = 118.6
[kips]
AISC 15th  Page 13-4
 


Beam Member Axial Force


This force is not for use in connection calc. It's output here for user input connection forces equilibrium check only.
Pbm - Beam member axial force is different from Pb-c - Beam to column interface axial force as shown above.

Pbm - Beam member axial force is from structural analysis output and cannot be used directly in beam end to column connection design as this force is interrupted by brace gusset to beam interface force before beam end reaching the column. This force is actually not needed from user's input for beam end to column connection design.

 
Pb-c - Beam to column interface axial force is calculated from user's input of brace axial forces and trasnfer force using uniform force method. This force is used in the beam end to column connection design.

 
Pbm - Beam member axial force is not needed for the beam end to column connection design and is calculated here for verification purpose only. If it matches the structural analysis output, that means equilibrium is reached and user's input of brace axial forces and trasnfer force are correct.

 


Top brace axial force
Pt
 = from seismic brace force calc
 = -559.7
[kips]
in tension
Top brace to ver line angle
θt
 = from user input
 = 45.0
[°]

Top brace gusset-column axial force
Hct
 = from calc shown above
 = -124.8
[kips]
AISC 15th  Eq. 13-3


Bot brace axial force
Pb
 = from seismic brace force calc
 = 157.3
[kips]
in compression
Bot brace to ver line angle
θb
 = from user input
 = 45.0
[°]

Bot brace gusset-column axial force
Hcb
 = from calc shown above
 = 33.8
[kips]
AISC 15th  Eq. 13-3


Beam to column interface axial force
Pb-c
 = from calc shown above
 = 118.6
[kips]
AISC 15th  Page 13-4
 
Beam member axial force
Pbm
 = (Hct - Pt sinθt ) + (Hcb - Pb sinθb )
 = 312.1
[kips]
in compression
+ Pb-c

 


Brace - SCBF   Load Case LC4


 
Top and bottom brace force
Top Ptop
 = 134.7
[kips] (C)
Bot Pbot
 = -615.9
[kips] (T)

Beam end shear & transfer force
Shear Rb
 = 19.9
[kips]
Transfer Ab
 = -27.6
[kips]

 
 


Top Brace Interface Forces


Refer to AISC 15th  Page 13-4 and Fig. 13-2 for all charts and definitions of variables and symbols shown in calculation below
eb
 = 12.350
[in]
ec
 = 6.450
[in]

α
 = 14.000
[in]
β
 = 9.625
[in]

θ
 = 45.0
[°]

K
 = eb tanθ - ec
 = 5.900
[in]
AISC 15th  Eq. 13-16
D
 = tan2 θ + (
α/β
)2
 = 3.116
AISC 15th  Eq. 13-24
K'
 = α ( tan θ +
α/β
)
 = 34.364
AISC 15th  Eq. 13-23
α
 = [ K' tan θ + K (
α/β
)2 ] / D
 = 14.000
[in]
AISC 15th  Eq. 13-21
β
 = ( K' - K tan θ ) / D
 = 8.100
[in]
AISC 15th  Eq. 13-22
r
 = [ ( eb + β ) 2 + ( ec + α ) 2 ]0.5
 = 28.921
[in]
AISC 15th  Eq. 13-6


Brace axial force
Pu
 = from seismic brace force calc
 = 134.7
[kips]
in compression
Gusset to Column Interface Forces

Shear force
Vc
 = ( β / r ) Pu
 = 37.7
[kips]
AISC 15th  Eq. 13-2
Axial force
Hc
 = ( ec / r ) Pu
 = 30.0
[kips]
AISC 15th  Eq. 13-3
Moment
Mc
 = Hc ( β - β )
 = -3.82
[kip-ft]
AISC 15th  Eq. 13-19
Gusset to Beam Interface Forces

Shear force
Hb
 = ( α / r ) Pu
 = 65.2
[kips]
AISC 15th  Eq. 13-5
Axial force
Vb
 = ( eb / r ) Pu
 = 57.5
[kips]
AISC 15th  Eq. 13-4
Moment
Mb
 = Vb ( α - α )
 = 0.00
[kip-ft]
AISC 15th  Eq. 13-17
 


Bottom Brace Interface Forces


Refer to AISC 15th  Page 13-4 and Fig. 13-2 for all charts and definitions of variables and symbols shown in calculation below
eb
 = 12.350
[in]
ec
 = 6.450
[in]

α
 = 14.750
[in]
β
 = 10.375
[in]

θ
 = 45.0
[°]

K
 = eb tanθ - ec
 = 5.900
[in]
AISC 15th  Eq. 13-16
D
 = tan2 θ + (
α/β
)2
 = 3.021
AISC 15th  Eq. 13-24
K'
 = α ( tan θ +
α/β
)
 = 35.720
AISC 15th  Eq. 13-23
α
 = [ K' tan θ + K (
α/β
)2 ] / D
 = 14.750
[in]
AISC 15th  Eq. 13-21
β
 = ( K' - K tan θ ) / D
 = 8.850
[in]
AISC 15th  Eq. 13-22
r
 = [ ( eb + β ) 2 + ( ec + α ) 2 ]0.5
 = 29.981
[in]
AISC 15th  Eq. 13-6


Brace axial force
Pu
 = from seismic brace force calc
 = -615.9
[kips]
in tension
Gusset to Column Interface Forces

Shear force
Vc
 = ( β / r ) Pu
 = -181.8
[kips]
AISC 15th  Eq. 13-2
Axial force
Hc
 = ( ec / r ) Pu
 = -132.5
[kips]
AISC 15th  Eq. 13-3
Moment
Mc
 = Hc ( β - β )
 = 16.84
[kip-ft]
AISC 15th  Eq. 13-19
Gusset to Beam Interface Forces

Shear force
Hb
 = ( α / r ) Pu
 = -303.0
[kips]
AISC 15th  Eq. 13-5
Axial force
Vb
 = ( eb / r ) Pu
 = -253.7
[kips]
AISC 15th  Eq. 13-4
Moment
Mb
 = Vb ( α - α )
 = 0.00
[kip-ft]
AISC 15th  Eq. 13-17
 


Beam to Column Interface Forces


Beam to Column Interface Shear Force
Beam end shear reaction
Rb
 = from user input
 = 19.9
[kips]

Top brace gusset-beam axial force
Vb-top
 = 
 = 57.5
[kips]
AISC 15th  Eq. 13-4
Bot brace gusset-beam axial force
Vb-bot
 = 
 = -253.7
[kips]
AISC 15th  Eq. 13-4
Beam to column shear force
Vb-c
 = Rb + Vb-top - Vb-bot
 = 331.1
[kips]
AISC 15th  Page 13-4
Beam to Column Interface Axial Force
Top brace gusset-column axial force
Hc-top
 = 
 = 30.0
[kips]
AISC 15th  Eq. 13-3
Bot brace gusset-column axial force
Hc-bot
 = 
 = -132.5
[kips]
AISC 15th  Eq. 13-3
Transfer force from adjacent bay
Ab
 = from user input
 = -27.6
[kips]

Beam to column axial force
Pb-c
 = ( Hc-top + Hc-bot ) x -1 - Ab
 = 130.1
[kips]
AISC 15th  Page 13-4
 


Beam Member Axial Force


This force is not for use in connection calc. It's output here for user input connection forces equilibrium check only.
Pbm - Beam member axial force is different from Pb-c - Beam to column interface axial force as shown above.

Pbm - Beam member axial force is from structural analysis output and cannot be used directly in beam end to column connection design as this force is interrupted by brace gusset to beam interface force before beam end reaching the column. This force is actually not needed from user's input for beam end to column connection design.

 
Pb-c - Beam to column interface axial force is calculated from user's input of brace axial forces and trasnfer force using uniform force method. This force is used in the beam end to column connection design.

 
Pbm - Beam member axial force is not needed for the beam end to column connection design and is calculated here for verification purpose only. If it matches the structural analysis output, that means equilibrium is reached and user's input of brace axial forces and trasnfer force are correct.

 


Top brace axial force
Pt
 = from seismic brace force calc
 = 134.7
[kips]
in compression
Top brace to ver line angle
θt
 = from user input
 = 45.0
[°]

Top brace gusset-column axial force
Hct
 = from calc shown above
 = 30.0
[kips]
AISC 15th  Eq. 13-3


Bot brace axial force
Pb
 = from seismic brace force calc
 = -615.9
[kips]
in tension
Bot brace to ver line angle
θb
 = from user input
 = 45.0
[°]

Bot brace gusset-column axial force
Hcb
 = from calc shown above
 = -132.5
[kips]
AISC 15th  Eq. 13-3


Beam to column interface axial force
Pb-c
 = from calc shown above
 = 130.1
[kips]
AISC 15th  Page 13-4
 
Beam member axial force
Pbm
 = (Hct - Pt sinθt ) + (Hcb - Pb sinθb )
 = 312.7
[kips]
in compression
+ Pb-c

 
 

Top Brace - Gusset to Column
Direct Weld Connection
Code=AISC 360-16 LRFD

Result Summary
geometries & weld limitations = PASS
limit states max ratio 
0.82
PASS
 
 
Weld Limitation Checks - Gusset to Column
PASS
Min Fillet Weld Size


Thinner part joined thickness
t
 = 
 = 0.750
[in]

Min fillet weld size allowed
wmin
 = 
 = 0.250
[in]
AISC 15th  Table J2.4
Fillet weld size provided
w
 = 
 = 0.438
[in]

 ≥ wmin
OK
Min Fillet Weld Length


Fillet weld size provided
w
 = 
 = 0.438
[in]

Min fillet weld length allowed
Lmin
 = 4 x w
 = 1.750
[in]
AISC 15th  J2.2b
Min fillet weld length
L
 = 
 = 17.250
[in]

 ≥ Lmin
OK
 
 
 
 
Seismic SCBF LC3
P1 =-559.7 kips (T)
P2 =157.3 kips (C)
ratio = 0.82
PASS

Gusset Plate - Shear Yielding
ratio = 156.8 / 388.1
0.40
PASS
Plate Shear Yielding Check



Plate size
width bp
 = 17.250
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Agv
 = bp tp
 = 12.938
[in2]

Shear force required
Vu
 = 
 = 156.8
[kips]

Plate shear yielding strength
Rn
 = 0.6 Fy Agv
 = 388.1
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 388.1
[kips]

ratio
 = 0.40
 > Vu
OK
 
Gusset Plate - Shear Rupture
ratio = 156.8 / 378.4
0.41
PASS
Plate Shear Rupture Check



Plate size
width bp
 = 17.250
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in shear
Anv
 = bp tp
 = 12.938
[in2]

Shear force in demand
Vu
 = 
 = 156.8
[kips]

Plate shear rupture strength
Rn
 = 0.6 Fu Anv
 = 504.6
[kips]
AISC 15th  Eq J4-4
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-4
φ Rn
 = 
 = 378.4
[kips]

ratio
 = 0.41
 > Vu
OK
 
 
Gusset Plate - Axial Tensile Yield
ratio = 124.8 / 582.2
0.21
PASS
Plate Tensile Yielding Check



Plate size
width bp
 = 17.250
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Ag
 = bp tp
 = 12.938
[in2]

Tensile force required
Pu
 = 
 = 124.8
[kips]

Plate tensile yielding strength
Rn
 = Fy Ag
 = 646.9
[kips]
AISC 15th  Eq J4-1
Resistance factor-LRFD
φ
 = 0.90
AISC 15th  Eq J4-1
φ Rn
 = 
 = 582.2
[kips]

ratio
 = 0.21
 > Pu
OK
 
Gusset Plate - Axial Tensile Rupture
ratio = 124.8 / 630.7
0.20
PASS
Plate Tensile Rupture Check



Plate size
width bp
 = 17.250
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in tension
Ant
 = bp tp
 = 12.938
[in2]

Tensile force required
Pu
 = 
 = 124.8
[kips]

Plate tensile rupture strength
Rn
 = Fu Ant
 = 840.9
[kips]
AISC 15th  Eq J4-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-2
φ Rn
 = 
 = 630.7
[kips]
AISC 15th  Eq J4-2
ratio
 = 0.20
 > Pu
OK
 
 
Gusset Plate - Flexural Yield Interact
ratio =
0.25
PASS
Gusset plate
width bp
 = 17.250
[in]
thick tp
 = 0.750
[in]

yield Fy
 = 50.0
[ksi]

Shear plate - gross area
Ag
 = bp x tp
 = 12.938
[in2]

Shear plate - plastic modulus
Zp
 = ( bp x t2p ) / 4
 = 55.79
[in3]

Flexural strength available
Mc
 = φ Fy Zp     φ=0.90
 = 209.22
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 15.86
[kip-ft]

 
Axial strength available
Pc
 = from axial tensile yield check
 = 582.2
[kips]

Axial strength required
Pr
 = from gusset interface forces calc
 = -124.8
[kips]

 
Shear strength available
Vc
 = from shear yielding check
 = 388.1
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 156.8
[kips]

 
Flexural yield interaction
ratio
 = (
Vr/Vc
)2 + (
Pr/Pc
+
Mr/Mc
)2
 = 0.25
AISC 15th  Eq 10-5
 < 1.0
OK
 
Gusset Plate - Flexural Rupture Interact
ratio =
0.24
PASS
Gusset plate
width bp
 = 17.250
[in]
thick tp
 = 0.750
[in]

tensile Fu
 = 65.0
[ksi]

Net area of plate
An
 = bp x tp
 = 12.938
[in2]

Plastic modulus of net section
Znet
 = ( bp x t2p ) / 4
 = 55.79
[in3]

Flexural strength available
Mc
 = φ Fu Znet     φ=0.75
 = 226.66
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 15.86
[kip-ft]

 
Axial strength available
Pc
 = from axial tensile rupture check
 = 630.7
[kips]

Axial strength required
Pr
 = from gusset interface forces calc
 = -124.8
[kips]

 
Shear strength available
Vc
 = from shear rupture check
 = 378.4
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 156.8
[kips]

 
Flexural rupture interaction
ratio
 = (
Vr/Vc
)2 + (
Pr/Pc
+
Mr/Mc
)2
 = 0.24
AISC 15th  Eq 10-5
 < 1.0
OK
 
 
Gusset to Column Weld Strength
ratio = 14.33 / 17.55
0.82
PASS
Gusset to Column Interface - Forces
shear Vc
 = 156.8
[kips]
axial Hc
 = -124.8
[kips]   in tension
moment Mc
 = 15.86
[kip-ft]

Gusset to Column Interface - Weld Length
Gusset-column fillet weld length
Lwc
 = from user input
 = 17.250
[in]

Gusset to Column Interface - Combined Weld Stress
Weld stress from axial force
fa
 = Hc / Lwc
 = -7.235
[kip/in]
in tension
Weld stress from shear force
fv
 = Vc / Lwc
 = 9.090
[kip/in]

Weld stress from moment force
fb
 = 
M/L2 / 6
 = 3.838
[kip/in]

Weld stress combined - max
fmax
 = [ (fa - fb )2 + f2v ]0.5
 = 14.326
[kip/in]
AISC 15th  Eq 8-11
Weld resultant load angle
θ
 = tan-1 [( fb - fa ) / fv ]
 = 50.6
[°]

Fillet Weld Strength Calc
Fillet weld leg size
w
 = 716
[in]
load angle θ
 = 50.6
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 2   for double fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.34
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 34.810
[kip/in]
AISC 15th  Eq 8-1


Base metal - gusset plate
thickness t
 = 0.750
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - gusset plate is in shear, shear rupture as per AISC 15th  Eq J4-4 is checked
AISC 15th  J2.4
Base metal shear rupture
Rn-b
 = 0.6 Fu t
 = 29.250
[kip/in]
AISC 15th  Eq J4-4


Double fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 29.250
[kip/in]
AISC 15th  Eq 9-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 21.938
[kip/in]

 
When gusset plate is directly welded to beam or column, apply 1.25 ductility factor
to allow adequate force redistribution in the weld group
AISC 15th  Page 13-11
 
Weld strength used for design after applying ductility factor
φ Rn
 = φ Rn x ( 1/1.25 )
 = 17.550
[kip/in]

ratio
 = 0.82
 > fmax
OK
 
 
Column Web Local Yielding
ratio = 168.9 / 768.6
0.22
PASS
Gusset Edge Equivalent Normal Force


Refer to AISC DG29  Fig. B-1 for formula below to calculate gusset edge equivalent normal force
 
Gusset edge axial force
N
 = 
 = -124.8
[kips]

Gusset edge moment force
M
 = 
 = 15.86
[kip-ft]

Gusset edge interface length
L
 = 
 = 17.250
[in]

Gusset edge equivalent normal force
Ne
 = N -
4 M/L
 = -168.9
[kips]
AISC DG29  Fig B-1


 
Concentrated force from gusset
Pu
 = 
 = 168.9
[kips]

Column section
d
 = 12.900
[in]
tf
 = 0.990
[in]

tw
 = 0.610
[in]
k
 = 1.590
[in]

yield Fy
 = 50.0
[ksi]



Length of bearing
lb
 = Gusset/Column interface length
 = 17.250
[in]

Column web local yielding strength
Rn
 = Fy tw ( 5 k + lb )
 = 768.6
[kips]
AISC 15th  Eq J10-2
Resistance factor-LRFD
φ
 = 1.00
φ Rn
 = 
 = 768.6
[kips]

ratio
 = 0.22
 > Pu
OK
 
Column Web Shear Strength
ratio = 124.8 / 236.1
0.53
PASS
W Shape Column Shear Strength Check



W sect W12X106
d
 = 12.900
[in]
tw
 = 0.610
[in]

Fy
 = 50.0
[ksi]



Gusset to column axial force
Vu
 = from gusset interface force calc
 = 124.8
[kips]

 
Column shear strength
Rn
 = 0.6 Fy d tw
 = 236.1
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 236.1
[kips]

ratio
 = 0.53
 > Vu
OK
 
 
 
 
Seismic SCBF LC4
P1 =134.7 kips (C)
P2 =-615.9 kips (T)
ratio = 0.14
PASS

Gusset Plate - Shear Yielding
ratio = 37.7 / 388.1
0.10
PASS
Plate Shear Yielding Check



Plate size
width bp
 = 17.250
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Agv
 = bp tp
 = 12.938
[in2]

Shear force required
Vu
 = 
 = 37.7
[kips]

Plate shear yielding strength
Rn
 = 0.6 Fy Agv
 = 388.1
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 388.1
[kips]

ratio
 = 0.10
 > Vu
OK
 
Gusset Plate - Shear Rupture
ratio = 37.7 / 378.4
0.10
PASS
Plate Shear Rupture Check



Plate size
width bp
 = 17.250
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in shear
Anv
 = bp tp
 = 12.938
[in2]

Shear force in demand
Vu
 = 
 = 37.7
[kips]

Plate shear rupture strength
Rn
 = 0.6 Fu Anv
 = 504.6
[kips]
AISC 15th  Eq J4-4
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-4
φ Rn
 = 
 = 378.4
[kips]

ratio
 = 0.10
 > Vu
OK
 
 
Gusset Plate - Axial Yield
ratio = 30.0 / 582.2
0.05
PASS
Plate Tensile Yielding Check



Plate size
width bp
 = 17.250
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Ag
 = bp tp
 = 12.938
[in2]

Tensile force required
Pu
 = 
 = 30.0
[kips]

Plate tensile yielding strength
Rn
 = Fy Ag
 = 646.9
[kips]
AISC 15th  Eq J4-1
Resistance factor-LRFD
φ
 = 0.90
AISC 15th  Eq J4-1
φ Rn
 = 
 = 582.2
[kips]

ratio
 = 0.05
 > Pu
OK
 
Gusset Plate - Flexural Yield Interact
ratio =
0.01
PASS
Gusset plate
width bp
 = 17.250
[in]
thick tp
 = 0.750
[in]

yield Fy
 = 50.0
[ksi]

Shear plate - gross area
Ag
 = bp x tp
 = 12.938
[in2]

Shear plate - plastic modulus
Zp
 = ( bp x t2p ) / 4
 = 55.79
[in3]

Flexural strength available
Mc
 = φ Fy Zp     φ=0.90
 = 209.22
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 3.82
[kip-ft]

 
Axial strength available
Pc
 = from axial tensile yield check
 = 582.2
[kips]

Axial strength required
Pr
 = from gusset interface forces calc
 = 30.0
[kips]

 
Shear strength available
Vc
 = from shear yielding check
 = 388.1
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 37.7
[kips]

 
Flexural yield interaction
ratio
 = (
Vr/Vc
)2 + (
Pr/Pc
+
Mr/Mc
)2
 = 0.01
AISC 15th  Eq 10-5
 < 1.0
OK
 
Gusset Plate - Flexural Rupture Interact
ratio =
0.01
PASS
Gusset plate
width bp
 = 17.250
[in]
thick tp
 = 0.750
[in]

tensile Fu
 = 65.0
[ksi]

Net area of plate
An
 = bp x tp
 = 12.938
[in2]

Plastic modulus of net section
Znet
 = ( bp x t2p ) / 4
 = 55.79
[in3]

Flexural strength available
Mc
 = φ Fu Znet     φ=0.75
 = 226.66
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 3.82
[kip-ft]

 
Shear strength available
Vc
 = from shear rupture check
 = 378.4
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 37.7
[kips]

 
Flexural rupture interaction
ratio
 = (
Vr/Vc
)2 + (
Mr/Mc
)2
 = 0.01
AISC 15th  Eq 10-5
 < 1.0
OK
 
 
Gusset to Column Weld Strength
ratio = 2.19 / 15.59
0.14
PASS
Gusset to Column Interface - Forces
shear Vc
 = 37.7
[kips]
axial Hc
 = 30.0
[kips]   in compression
moment Mc
 = 3.82
[kip-ft]

Gusset to Column Interface - Weld Length
Gusset-column fillet weld length
Lwc
 = from user input
 = 17.250
[in]

Gusset to Column Interface - Combined Weld Stress
Weld stress from axial force
fa
 = Hc / Lwc
 = 1.739
[kip/in]
in compression
Weld stress from shear force
fv
 = Vc / Lwc
 = 2.186
[kip/in]

Weld stress from moment force
fb
 = 
M/L2 / 6
 = 0.924
[kip/in]

Weld stress combined - max
fmax
 = fv
 = 2.186
[kip/in]
AISC 15th  Eq 8-11
Weld resultant load angle
θ
 = weld only has shear component
 = 0.0
[°]

Fillet Weld Strength Calc
Fillet weld leg size
w
 = 716
[in]
load angle θ
 = 0.0
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 2   for double fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.00
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 25.982
[kip/in]
AISC 15th  Eq 8-1


Base metal - gusset plate
thickness t
 = 0.750
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - gusset plate is in shear, shear rupture as per AISC 15th  Eq J4-4 is checked
AISC 15th  J2.4
Base metal shear rupture
Rn-b
 = 0.6 Fu t
 = 29.250
[kip/in]
AISC 15th  Eq J4-4


Double fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 25.982
[kip/in]
AISC 15th  Eq 9-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 19.487
[kip/in]

 
When gusset plate is directly welded to beam or column, apply 1.25 ductility factor
to allow adequate force redistribution in the weld group
AISC 15th  Page 13-11
 
Weld strength used for design after applying ductility factor
φ Rn
 = φ Rn x ( 1/1.25 )
 = 15.589
[kip/in]

ratio
 = 0.14
 > fmax
OK
 
 
Column Web Local Yielding
ratio = 40.6 / 768.6
0.05
PASS
Gusset Edge Equivalent Normal Force


Refer to AISC DG29  Fig. B-1 for formula below to calculate gusset edge equivalent normal force
 
Gusset edge axial force
N
 = 
 = 30.0
[kips]

Gusset edge moment force
M
 = 
 = 3.82
[kip-ft]

Gusset edge interface length
L
 = 
 = 17.250
[in]

Gusset edge equivalent normal force
Ne
 = N +
4 M/L
 = 40.6
[kips]
AISC DG29  Fig B-1


 
Concentrated force from gusset
Pu
 = 
 = 40.6
[kips]

Column section
d
 = 12.900
[in]
tf
 = 0.990
[in]

tw
 = 0.610
[in]
k
 = 1.590
[in]

yield Fy
 = 50.0
[ksi]



Length of bearing
lb
 = Gusset/Column interface length
 = 17.250
[in]

Column web local yielding strength
Rn
 = Fy tw ( 5 k + lb )
 = 768.6
[kips]
AISC 15th  Eq J10-2
Resistance factor-LRFD
φ
 = 1.00
φ Rn
 = 
 = 768.6
[kips]

ratio
 = 0.05
 > Pu
OK
 
Column Web Local Crippling
ratio = 40.6 / 1007.0
0.04
PASS
Gusset Edge Equivalent Normal Force


Refer to AISC DG29  Fig. B-1 for formula below to calculate gusset edge equivalent normal force
 
Gusset edge axial force
N
 = 
 = 30.0
[kips]

Gusset edge moment force
M
 = 
 = 3.82
[kip-ft]

Gusset edge interface length
L
 = 
 = 17.250
[in]

Gusset edge equivalent normal force
Ne
 = N +
4 M/L
 = 40.6
[kips]
AISC DG29  Fig B-1


 
Concentrated force from gusset
Pu
 = 
 = 40.6
[kips]

Column section
d
 = 12.900
[in]
tf
 = 0.990
[in]

tw
 = 0.610
[in]
k
 = 1.590
[in]

yield Fy
 = 50.0
[ksi]
E
 = 29000
[ksi]



Length of bearing
lb
 = Gusset/Column interface length
 = 17.250
[in]

 
when lN  ≥ d/2 , use Eq J10-4
AISC 15th  Eq J10-4
Column web local crippling strength
Rn
 = 0.8 t2w [1+3
lb/d
(
tw/tf
)1.5 ] x
 = 1342.7
[kips]
AISC 15th  Eq J10-4
(
E Fy tf/tw
)0.5

Resistance factor-LRFD
φ
 = 0.75
AISC 15th  J10.3
φRn
 = 
 = 1007.0
[kips]

ratio
 = 0.04
 > Pu
OK
 
Column Web Shear Strength
ratio = 30.0 / 236.1
0.13
PASS
W Shape Column Shear Strength Check



W sect W12X106
d
 = 12.900
[in]
tw
 = 0.610
[in]

Fy
 = 50.0
[ksi]



Gusset to column axial force
Vu
 = from gusset interface force calc
 = 30.0
[kips]

 
Column shear strength
Rn
 = 0.6 Fy d tw
 = 236.1
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 236.1
[kips]

ratio
 = 0.13
 > Vu
OK
 
 
 
 

Top Brace - Gusset to Beam
Direct Weld Connection
Code=AISC 360-16 LRFD

Result Summary
geometries & weld limitations = PASS
limit states max ratio 
0.79
PASS
 
 
Brace Weld Limitation Checks - Gusset to Beam
PASS
Min Fillet Weld Size


Thinner part joined thickness
t
 = 
 = 0.750
[in]

Min fillet weld size allowed
wmin
 = 
 = 0.250
[in]
AISC 15th  Table J2.4
Fillet weld size provided
w
 = 
 = 0.438
[in]

 ≥ wmin
OK
Min Fillet Weld Length


Fillet weld size provided
w
 = 
 = 0.438
[in]

Min fillet weld length allowed
Lmin
 = 4 x w
 = 1.750
[in]
AISC 15th  J2.2b
Min fillet weld length
L
 = 
 = 26.000
[in]

 ≥ Lmin
OK
 
 
 
 
Seismic SCBF LC3
P1 =-559.7 kips (T)
P2 =157.3 kips (C)
ratio = 0.79
PASS

Gusset Plate - Shear Yielding
ratio = 270.9 / 585.0
0.46
PASS
Plate Shear Yielding Check



Plate size
width bp
 = 26.000
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Agv
 = bp tp
 = 19.500
[in2]

Shear force required
Vu
 = 
 = 270.9
[kips]

Plate shear yielding strength
Rn
 = 0.6 Fy Agv
 = 585.0
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 585.0
[kips]

ratio
 = 0.46
 > Vu
OK
 
Gusset Plate - Shear Rupture
ratio = 270.9 / 570.4
0.47
PASS
Plate Shear Rupture Check



Plate size
width bp
 = 26.000
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in shear
Anv
 = bp tp
 = 19.500
[in2]

Shear force in demand
Vu
 = 
 = 270.9
[kips]

Plate shear rupture strength
Rn
 = 0.6 Fu Anv
 = 760.5
[kips]
AISC 15th  Eq J4-4
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-4
φ Rn
 = 
 = 570.4
[kips]

ratio
 = 0.47
 > Vu
OK
 
 
Gusset Plate - Axial Tensile Yield
ratio = 239.0 / 877.5
0.27
PASS
Plate Tensile Yielding Check



Plate size
width bp
 = 26.000
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Ag
 = bp tp
 = 19.500
[in2]

Tensile force required
Pu
 = 
 = 239.0
[kips]

Plate tensile yielding strength
Rn
 = Fy Ag
 = 975.0
[kips]
AISC 15th  Eq J4-1
Resistance factor-LRFD
φ
 = 0.90
AISC 15th  Eq J4-1
φ Rn
 = 
 = 877.5
[kips]

ratio
 = 0.27
 > Pu
OK
 
Gusset Plate - Axial Tensile Rupture
ratio = 239.0 / 950.6
0.25
PASS
Plate Tensile Rupture Check



Plate size
width bp
 = 26.000
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in tension
Ant
 = bp tp
 = 19.500
[in2]

Tensile force required
Pu
 = 
 = 239.0
[kips]

Plate tensile rupture strength
Rn
 = Fu Ant
 = 1267.5
[kips]
AISC 15th  Eq J4-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-2
φ Rn
 = 
 = 950.6
[kips]
AISC 15th  Eq J4-2
ratio
 = 0.25
 > Pu
OK
 
 
Gusset Plate - Flexural Yield Interact
ratio =
0.29
PASS
Gusset plate
width bp
 = 26.000
[in]
thick tp
 = 0.750
[in]

yield Fy
 = 50.0
[ksi]

Shear plate - gross area
Ag
 = bp x tp
 = 19.500
[in2]

Shear plate - plastic modulus
Zp
 = ( bp x t2p ) / 4
 = 126.75
[in3]

Flexural strength available
Mc
 = φ Fy Zp     φ=0.90
 = 475.31
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 0.00
[kip-ft]

 
Axial strength available
Pc
 = from axial tensile yield check
 = 877.5
[kips]

Axial strength required
Pr
 = from gusset interface forces calc
 = -239.0
[kips]

 
Shear strength available
Vc
 = from shear yielding check
 = 585.0
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 270.9
[kips]

 
Flexural yield interaction
ratio
 = (
Vr/Vc
)2 + (
Pr/Pc
+
Mr/Mc
)2
 = 0.29
AISC 15th  Eq 10-5
 < 1.0
OK
 
Gusset Plate - Flexural Rupture Interact
ratio =
0.29
PASS
Gusset plate
width bp
 = 26.000
[in]
thick tp
 = 0.750
[in]

tensile Fu
 = 65.0
[ksi]

Net area of plate
An
 = bp x tp
 = 19.500
[in2]

Plastic modulus of net section
Znet
 = ( bp x t2p ) / 4
 = 126.75
[in3]

Flexural strength available
Mc
 = φ Fu Znet     φ=0.75
 = 514.92
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 0.00
[kip-ft]

 
Axial strength available
Pc
 = from axial tensile rupture check
 = 950.6
[kips]

Axial strength required
Pr
 = from gusset interface forces calc
 = -239.0
[kips]

 
Shear strength available
Vc
 = from shear rupture check
 = 570.4
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 270.9
[kips]

 
Flexural rupture interaction
ratio
 = (
Vr/Vc
)2 + (
Pr/Pc
+
Mr/Mc
)2
 = 0.29
AISC 15th  Eq 10-5
 < 1.0
OK
 
 
Gusset to Beam Weld Strength
ratio = 13.89 / 17.55
0.79
PASS
Gusset to Beam Interface - Forces
shear Hb
 = 270.9
[kips]
axial Vb
 = -239.0
[kips]   in tension
moment Mb
 = 0.00
[kip-ft]

 
Gusset-beam fillet weld length
Lw
 = 
 = 26.000
[in]

Gusset to Beam Interface - Combined Weld Stress
Weld stress from axial force
fa
 = Vb / Lwb
 = -9.192
[kip/in]
in tension
Weld stress from shear force
fv
 = Hb / Lwb
 = 10.419
[kip/in]

Weld stress from moment force
fb
 = 
M/L2 / 6
 = 0.000
[kip/in]

Weld stress combined - max
fmax
 = [ (fa - fb )2 + f2v ]0.5
 = 13.895
[kip/in]
AISC 15th  Eq 8-11
Weld resultant load angle
θ
 = tan-1 [( fb - fa ) / fv ]
 = 41.4
[°]

Fillet Weld Strength Calc
Fillet weld leg size
w
 = 716
[in]
load angle θ
 = 41.4
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 2   for double fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.27
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 32.973
[kip/in]
AISC 15th  Eq 8-1


Base metal - gusset plate
thickness t
 = 0.750
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - gusset plate is in shear, shear rupture as per AISC 15th  Eq J4-4 is checked
AISC 15th  J2.4
Base metal shear rupture
Rn-b
 = 0.6 Fu t
 = 29.250
[kip/in]
AISC 15th  Eq J4-4


Double fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 29.250
[kip/in]
AISC 15th  Eq 9-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 21.938
[kip/in]

 
When gusset plate is directly welded to beam or column, apply 1.25 ductility factor
to allow adequate force redistribution in the weld group
AISC 15th  Page 13-11
 
Weld strength used for design after applying ductility factor
φ Rn
 = φ Rn x ( 1/1.25 )
 = 17.550
[kip/in]

ratio
 = 0.79
 > fmax
OK
 
 
Beam Web Local Yielding
ratio = 239.0 / 974.2
0.25
PASS
 
Concentrated force from gusset
Pu
 = 
 = 239.0
[kips]

Beam section
d
 = 24.700
[in]
tf
 = 1.090
[in]

tw
 = 0.650
[in]
k
 = 1.590
[in]

yield Fy
 = 50.0
[ksi]



Length of bearing
lb
 = Gusset/Beam interface length
 = 26.000
[in]

Gusset plate corner clip
clip
 = from user input
 = 1.000
[in]

Distance from normal force applied point to member end
lN
 = 0.5 lb + clip
 = 14.000
[in]

 
when lN  ≤ d , use AISC 15th  Eq J10-3
AISC 15th  Eq J10-3
 
Beam web local yielding strength
Rn
 = Fy tw ( 2.5 k + lb )
 = 974.2
[kips]
AISC 15th  Eq J10-3
Resistance factor-LRFD
φ
 = 1.00
φ Rn
 = 
 = 974.2
[kips]

ratio
 = 0.25
 > Pu
OK
 
 
 
Seismic SCBF LC4
P1 =134.7 kips (C)
P2 =-615.9 kips (T)
ratio = 0.16
PASS

Gusset Plate - Shear Yielding
ratio = 65.2 / 585.0
0.11
PASS
Plate Shear Yielding Check



Plate size
width bp
 = 26.000
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Agv
 = bp tp
 = 19.500
[in2]

Shear force required
Vu
 = 
 = 65.2
[kips]

Plate shear yielding strength
Rn
 = 0.6 Fy Agv
 = 585.0
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 585.0
[kips]

ratio
 = 0.11
 > Vu
OK
 
Gusset Plate - Shear Rupture
ratio = 65.2 / 570.4
0.11
PASS
Plate Shear Rupture Check



Plate size
width bp
 = 26.000
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in shear
Anv
 = bp tp
 = 19.500
[in2]

Shear force in demand
Vu
 = 
 = 65.2
[kips]

Plate shear rupture strength
Rn
 = 0.6 Fu Anv
 = 760.5
[kips]
AISC 15th  Eq J4-4
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-4
φ Rn
 = 
 = 570.4
[kips]

ratio
 = 0.11
 > Vu
OK
 
 
Gusset Plate - Axial Yield
ratio = 57.5 / 877.5
0.07
PASS
Plate Tensile Yielding Check



Plate size
width bp
 = 26.000
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Ag
 = bp tp
 = 19.500
[in2]

Tensile force required
Pu
 = 
 = 57.5
[kips]

Plate tensile yielding strength
Rn
 = Fy Ag
 = 975.0
[kips]
AISC 15th  Eq J4-1
Resistance factor-LRFD
φ
 = 0.90
AISC 15th  Eq J4-1
φ Rn
 = 
 = 877.5
[kips]

ratio
 = 0.07
 > Pu
OK
 
 
Gusset Plate - Flexural Yield Interact
ratio =
0.02
PASS
Gusset plate
width bp
 = 26.000
[in]
thick tp
 = 0.750
[in]

yield Fy
 = 50.0
[ksi]

Shear plate - gross area
Ag
 = bp x tp
 = 19.500
[in2]

Shear plate - plastic modulus
Zp
 = ( bp x t2p ) / 4
 = 126.75
[in3]

Flexural strength available
Mc
 = φ Fy Zp     φ=0.90
 = 475.31
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 0.00
[kip-ft]

 
Axial strength available
Pc
 = from axial tensile yield check
 = 877.5
[kips]

Axial strength required
Pr
 = from gusset interface forces calc
 = 57.5
[kips]

 
Shear strength available
Vc
 = from shear yielding check
 = 585.0
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 65.2
[kips]

 
Flexural yield interaction
ratio
 = (
Vr/Vc
)2 + (
Pr/Pc
+
Mr/Mc
)2
 = 0.02
AISC 15th  Eq 10-5
 < 1.0
OK
 
Gusset Plate - Flexural Rupture Interact
ratio =
0.01
PASS
Gusset plate
width bp
 = 26.000
[in]
thick tp
 = 0.750
[in]

tensile Fu
 = 65.0
[ksi]

Net area of plate
An
 = bp x tp
 = 19.500
[in2]

Plastic modulus of net section
Znet
 = ( bp x t2p ) / 4
 = 126.75
[in3]

Flexural strength available
Mc
 = φ Fu Znet     φ=0.75
 = 514.92
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 0.00
[kip-ft]

 
Shear strength available
Vc
 = from shear rupture check
 = 570.4
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 65.2
[kips]

 
Flexural rupture interaction
ratio
 = (
Vr/Vc
)2 + (
Mr/Mc
)2
 = 0.01
AISC 15th  Eq 10-5
 < 1.0
OK
 
 
Gusset to Beam Weld Strength
ratio = 2.51 / 15.59
0.16
PASS
Gusset to Beam Interface - Forces
shear Hb
 = 65.2
[kips]
axial Vb
 = 57.5
[kips]   in compression
moment Mb
 = 0.00
[kip-ft]

 
Gusset-beam fillet weld length
Lw
 = 
 = 26.000
[in]

Gusset to Beam Interface - Combined Weld Stress
Weld stress from axial force
fa
 = Vb / Lwb
 = 0.000
[kip/in]
in compression
Weld stress from shear force
fv
 = Hb / Lwb
 = 2.508
[kip/in]

Weld stress from moment force
fb
 = 
M/L2 / 6
 = 0.000
[kip/in]

Weld stress combined - max
fmax
 = fv
 = 2.508
[kip/in]
AISC 15th  Eq 8-11
Weld resultant load angle
θ
 = weld only has shear component
 = 0.0
[°]

Fillet Weld Strength Calc
Fillet weld leg size
w
 = 716
[in]
load angle θ
 = 0.0
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 2   for double fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.00
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 25.982
[kip/in]
AISC 15th  Eq 8-1


Base metal - gusset plate
thickness t
 = 0.750
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - gusset plate is in shear, shear rupture as per AISC 15th  Eq J4-4 is checked
AISC 15th  J2.4
Base metal shear rupture
Rn-b
 = 0.6 Fu t
 = 29.250
[kip/in]
AISC 15th  Eq J4-4


Double fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 25.982
[kip/in]
AISC 15th  Eq 9-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 19.487
[kip/in]

 
When gusset plate is directly welded to beam or column, apply 1.25 ductility factor
to allow adequate force redistribution in the weld group
AISC 15th  Page 13-11
 
Weld strength used for design after applying ductility factor
φ Rn
 = φ Rn x ( 1/1.25 )
 = 15.589
[kip/in]

ratio
 = 0.16
 > fmax
OK
 
 
Beam Web Local Yielding
ratio = 57.5 / 974.2
0.06
PASS
 
Concentrated force from gusset
Pu
 = 
 = 57.5
[kips]

Beam section
d
 = 24.700
[in]
tf
 = 1.090
[in]

tw
 = 0.650
[in]
k
 = 1.590
[in]

yield Fy
 = 50.0
[ksi]



Length of bearing
lb
 = Gusset/Beam interface length
 = 26.000
[in]

Gusset plate corner clip
clip
 = from user input
 = 1.000
[in]

Distance from normal force applied point to member end
lN
 = 0.5 lb + clip
 = 14.000
[in]

 
when lN  ≤ d , use AISC 15th  Eq J10-3
AISC 15th  Eq J10-3
 
Beam web local yielding strength
Rn
 = Fy tw ( 2.5 k + lb )
 = 974.2
[kips]
AISC 15th  Eq J10-3
Resistance factor-LRFD
φ
 = 1.00
φ Rn
 = 
 = 974.2
[kips]

ratio
 = 0.06
 > Pu
OK
 
Beam Web Local Crippling
ratio = 57.5 / 970.1
0.06
PASS
 
Concentrated force from gusset
Pu
 = 
 = 57.5
[kips]

Beam section
d
 = 24.700
[in]
tf
 = 1.090
[in]

tw
 = 0.650
[in]
k
 = 1.590
[in]

yield Fy
 = 50.0
[ksi]
E
 = 29000
[ksi]



Length of bearing
lb
 = Gusset/Beam interface length
 = 26.000
[in]

Gusset plate corner clip
clip
 = from user input
 = 1.000
[in]

Distance from normal force applied point to member end
lN
 = 0.5 lb + clip
 = 14.000
[in]

 
when lN  ≥ d/2 , use Eq J10-4
AISC 15th  Eq J10-4
Beam web local crippling strength
Rn
 = 0.8 t2w [1+3
lb/d
(
tw/tf
)1.5 ] x
 = 1293.5
[kips]
AISC 15th  Eq J10-4
(
E Fy tf/tw
)0.5

Resistance factor-LRFD
φ
 = 0.75
AISC 15th  J10.3
φRn
 = 
 = 970.1
[kips]

ratio
 = 0.06
 > Pu
OK
 
 
 
 

Bot Brace - Gusset to Column
Direct Weld Connection
Code=AISC 360-16 LRFD

Result Summary
geometries & weld limitations = PASS
limit states max ratio 
0.98
PASS
 
 
Weld Limitation Checks - Gusset to Column
PASS
Min Fillet Weld Size


Thinner part joined thickness
t
 = 
 = 0.750
[in]

Min fillet weld size allowed
wmin
 = 
 = 0.250
[in]
AISC 15th  Table J2.4
Fillet weld size provided
w
 = 
 = 0.313
[in]

 ≥ wmin
OK
Min Fillet Weld Length


Fillet weld size provided
w
 = 
 = 0.313
[in]

Min fillet weld length allowed
Lmin
 = 4 x w
 = 1.250
[in]
AISC 15th  J2.2b
Min fillet weld length
L
 = 
 = 18.750
[in]

 ≥ Lmin
OK
 
 
 
 
Seismic SCBF LC3
P1 =-559.7 kips (T)
P2 =157.3 kips (C)
ratio = 0.22
PASS

Gusset Plate - Shear Yielding
ratio = 46.4 / 421.9
0.11
PASS
Plate Shear Yielding Check



Plate size
width bp
 = 18.750
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Agv
 = bp tp
 = 14.063
[in2]

Shear force required
Vu
 = 
 = 46.4
[kips]

Plate shear yielding strength
Rn
 = 0.6 Fy Agv
 = 421.9
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 421.9
[kips]

ratio
 = 0.11
 > Vu
OK
 
Gusset Plate - Shear Rupture
ratio = 46.4 / 411.3
0.11
PASS
Plate Shear Rupture Check



Plate size
width bp
 = 18.750
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in shear
Anv
 = bp tp
 = 14.063
[in2]

Shear force in demand
Vu
 = 
 = 46.4
[kips]

Plate shear rupture strength
Rn
 = 0.6 Fu Anv
 = 548.4
[kips]
AISC 15th  Eq J4-4
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-4
φ Rn
 = 
 = 411.3
[kips]

ratio
 = 0.11
 > Vu
OK
 
 
Gusset Plate - Axial Tensile Yield
ratio = 33.8 / 632.8
0.05
PASS
Plate Tensile Yielding Check



Plate size
width bp
 = 18.750
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Ag
 = bp tp
 = 14.063
[in2]

Tensile force required
Pu
 = 
 = 33.8
[kips]

Plate tensile yielding strength
Rn
 = Fy Ag
 = 703.1
[kips]
AISC 15th  Eq J4-1
Resistance factor-LRFD
φ
 = 0.90
AISC 15th  Eq J4-1
φ Rn
 = 
 = 632.8
[kips]

ratio
 = 0.05
 > Pu
OK
 
Gusset Plate - Axial Tensile Rupture
ratio = 33.8 / 685.5
0.05
PASS
Plate Tensile Rupture Check



Plate size
width bp
 = 18.750
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in tension
Ant
 = bp tp
 = 14.063
[in2]

Tensile force required
Pu
 = 
 = 33.8
[kips]

Plate tensile rupture strength
Rn
 = Fu Ant
 = 914.1
[kips]
AISC 15th  Eq J4-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-2
φ Rn
 = 
 = 685.5
[kips]
AISC 15th  Eq J4-2
ratio
 = 0.05
 > Pu
OK
 
 
Gusset Plate - Flexural Yield Interact
ratio =
0.01
PASS
Gusset plate
width bp
 = 18.750
[in]
thick tp
 = 0.750
[in]

yield Fy
 = 50.0
[ksi]

Shear plate - gross area
Ag
 = bp x tp
 = 14.063
[in2]

Shear plate - plastic modulus
Zp
 = ( bp x t2p ) / 4
 = 65.92
[in3]

Flexural strength available
Mc
 = φ Fy Zp     φ=0.90
 = 247.19
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 4.30
[kip-ft]

 
Axial strength available
Pc
 = from axial tensile yield check
 = 632.8
[kips]

Axial strength required
Pr
 = from gusset interface forces calc
 = 33.8
[kips]

 
Shear strength available
Vc
 = from shear yielding check
 = 421.9
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 46.4
[kips]

 
Flexural yield interaction
ratio
 = (
Vr/Vc
)2 + (
Pr/Pc
+
Mr/Mc
)2
 = 0.01
AISC 15th  Eq 10-5
 < 1.0
OK
 
Gusset Plate - Flexural Rupture Interact
ratio =
0.01
PASS
Gusset plate
width bp
 = 18.750
[in]
thick tp
 = 0.750
[in]

tensile Fu
 = 65.0
[ksi]

Net area of plate
An
 = bp x tp
 = 14.063
[in2]

Plastic modulus of net section
Znet
 = ( bp x t2p ) / 4
 = 65.92
[in3]

Flexural strength available
Mc
 = φ Fu Znet     φ=0.75
 = 267.79
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 4.30
[kip-ft]

 
Axial strength available
Pc
 = from axial tensile rupture check
 = 685.5
[kips]

Axial strength required
Pr
 = from gusset interface forces calc
 = 33.8
[kips]

 
Shear strength available
Vc
 = from shear rupture check
 = 411.3
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 46.4
[kips]

 
Flexural rupture interaction
ratio
 = (
Vr/Vc
)2 + (
Pr/Pc
+
Mr/Mc
)2
 = 0.01
AISC 15th  Eq 10-5
 < 1.0
OK
 
 
Gusset to Column Weld Strength
ratio = 2.47 / 11.14
0.22
PASS
Gusset to Column Interface - Forces
shear Vc
 = 46.4
[kips]
axial Hc
 = 33.8
[kips]   in compression
moment Mc
 = 4.30
[kip-ft]

Gusset to Column Interface - Weld Length
Gusset-column fillet weld length
Lwc
 = from user input
 = 18.750
[in]

Gusset to Column Interface - Combined Weld Stress
Weld stress from axial force
fa
 = Hc / Lwc
 = 1.803
[kip/in]
in compression
Weld stress from shear force
fv
 = Vc / Lwc
 = 2.475
[kip/in]

Weld stress from moment force
fb
 = 
M/L2 / 6
 = 0.881
[kip/in]

Weld stress combined - max
fmax
 = fv
 = 2.475
[kip/in]
AISC 15th  Eq 8-11
Weld resultant load angle
θ
 = weld only has shear component
 = 0.0
[°]

Fillet Weld Strength Calc
Fillet weld leg size
w
 = 516
[in]
load angle θ
 = 0.0
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 2   for double fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.00
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 18.559
[kip/in]
AISC 15th  Eq 8-1


Base metal - gusset plate
thickness t
 = 0.750
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - gusset plate is in shear, shear rupture as per AISC 15th  Eq J4-4 is checked
AISC 15th  J2.4
Base metal shear rupture
Rn-b
 = 0.6 Fu t
 = 29.250
[kip/in]
AISC 15th  Eq J4-4


Double fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 18.559
[kip/in]
AISC 15th  Eq 9-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 13.919
[kip/in]

 
When gusset plate is directly welded to beam or column, apply 1.25 ductility factor
to allow adequate force redistribution in the weld group
AISC 15th  Page 13-11
 
Weld strength used for design after applying ductility factor
φ Rn
 = φ Rn x ( 1/1.25 )
 = 11.135
[kip/in]

ratio
 = 0.22
 > fmax
OK
 
 
Column Web Local Yielding
ratio = 44.8 / 814.4
0.06
PASS
Gusset Edge Equivalent Normal Force


Refer to AISC DG29  Fig. B-1 for formula below to calculate gusset edge equivalent normal force
 
Gusset edge axial force
N
 = 
 = 33.8
[kips]

Gusset edge moment force
M
 = 
 = 4.30
[kip-ft]

Gusset edge interface length
L
 = 
 = 18.750
[in]

Gusset edge equivalent normal force
Ne
 = N +
4 M/L
 = 44.8
[kips]
AISC DG29  Fig B-1


 
Concentrated force from gusset
Pu
 = 
 = 44.8
[kips]

Column section
d
 = 12.900
[in]
tf
 = 0.990
[in]

tw
 = 0.610
[in]
k
 = 1.590
[in]

yield Fy
 = 50.0
[ksi]



Length of bearing
lb
 = Gusset/Column interface length
 = 18.750
[in]

Column web local yielding strength
Rn
 = Fy tw ( 5 k + lb )
 = 814.4
[kips]
AISC 15th  Eq J10-2
Resistance factor-LRFD
φ
 = 1.00
φ Rn
 = 
 = 814.4
[kips]

ratio
 = 0.06
 > Pu
OK
 
Column Web Local Crippling
ratio = 44.8 / 1064.8
0.04
PASS
Gusset Edge Equivalent Normal Force


Refer to AISC DG29  Fig. B-1 for formula below to calculate gusset edge equivalent normal force
 
Gusset edge axial force
N
 = 
 = 33.8
[kips]

Gusset edge moment force
M
 = 
 = 4.30
[kip-ft]

Gusset edge interface length
L
 = 
 = 18.750
[in]

Gusset edge equivalent normal force
Ne
 = N +
4 M/L
 = 44.8
[kips]
AISC DG29  Fig B-1


 
Concentrated force from gusset
Pu
 = 
 = 44.8
[kips]

Column section
d
 = 12.900
[in]
tf
 = 0.990
[in]

tw
 = 0.610
[in]
k
 = 1.590
[in]

yield Fy
 = 50.0
[ksi]
E
 = 29000
[ksi]



Length of bearing
lb
 = Gusset/Column interface length
 = 18.750
[in]

 
when lN  ≥ d/2 , use Eq J10-4
AISC 15th  Eq J10-4
Column web local crippling strength
Rn
 = 0.8 t2w [1+3
lb/d
(
tw/tf
)1.5 ] x
 = 1419.7
[kips]
AISC 15th  Eq J10-4
(
E Fy tf/tw
)0.5

Resistance factor-LRFD
φ
 = 0.75
AISC 15th  J10.3
φRn
 = 
 = 1064.8
[kips]

ratio
 = 0.04
 > Pu
OK
 
Column Web Shear Strength
ratio = 33.8 / 236.1
0.14
PASS
W Shape Column Shear Strength Check



W sect W12X106
d
 = 12.900
[in]
tw
 = 0.610
[in]

Fy
 = 50.0
[ksi]



Gusset to column axial force
Vu
 = from gusset interface force calc
 = 33.8
[kips]

 
Column shear strength
Rn
 = 0.6 Fy d tw
 = 236.1
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 236.1
[kips]

ratio
 = 0.14
 > Vu
OK
 
 
 
 
Seismic SCBF LC4
P1 =134.7 kips (C)
P2 =-615.9 kips (T)
ratio = 0.98
PASS

Gusset Plate - Shear Yielding
ratio = 181.8 / 421.9
0.43
PASS
Plate Shear Yielding Check



Plate size
width bp
 = 18.750
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Agv
 = bp tp
 = 14.063
[in2]

Shear force required
Vu
 = 
 = 181.8
[kips]

Plate shear yielding strength
Rn
 = 0.6 Fy Agv
 = 421.9
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 421.9
[kips]

ratio
 = 0.43
 > Vu
OK
 
Gusset Plate - Shear Rupture
ratio = 181.8 / 411.3
0.44
PASS
Plate Shear Rupture Check



Plate size
width bp
 = 18.750
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in shear
Anv
 = bp tp
 = 14.063
[in2]

Shear force in demand
Vu
 = 
 = 181.8
[kips]

Plate shear rupture strength
Rn
 = 0.6 Fu Anv
 = 548.4
[kips]
AISC 15th  Eq J4-4
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-4
φ Rn
 = 
 = 411.3
[kips]

ratio
 = 0.44
 > Vu
OK
 
 
Gusset Plate - Axial Yield
ratio = 132.5 / 632.8
0.21
PASS
Plate Tensile Yielding Check



Plate size
width bp
 = 18.750
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Ag
 = bp tp
 = 14.063
[in2]

Tensile force required
Pu
 = 
 = 132.5
[kips]

Plate tensile yielding strength
Rn
 = Fy Ag
 = 703.1
[kips]
AISC 15th  Eq J4-1
Resistance factor-LRFD
φ
 = 0.90
AISC 15th  Eq J4-1
φ Rn
 = 
 = 632.8
[kips]

ratio
 = 0.21
 > Pu
OK
 
Gusset Plate - Flexural Yield Interact
ratio =
0.26
PASS
Gusset plate
width bp
 = 18.750
[in]
thick tp
 = 0.750
[in]

yield Fy
 = 50.0
[ksi]

Shear plate - gross area
Ag
 = bp x tp
 = 14.063
[in2]

Shear plate - plastic modulus
Zp
 = ( bp x t2p ) / 4
 = 65.92
[in3]

Flexural strength available
Mc
 = φ Fy Zp     φ=0.90
 = 247.19
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 16.84
[kip-ft]

 
Axial strength available
Pc
 = from axial tensile yield check
 = 632.8
[kips]

Axial strength required
Pr
 = from gusset interface forces calc
 = -132.5
[kips]

 
Shear strength available
Vc
 = from shear yielding check
 = 421.9
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 181.8
[kips]

 
Flexural yield interaction
ratio
 = (
Vr/Vc
)2 + (
Pr/Pc
+
Mr/Mc
)2
 = 0.26
AISC 15th  Eq 10-5
 < 1.0
OK
 
Gusset Plate - Flexural Rupture Interact
ratio =
0.20
PASS
Gusset plate
width bp
 = 18.750
[in]
thick tp
 = 0.750
[in]

tensile Fu
 = 65.0
[ksi]

Net area of plate
An
 = bp x tp
 = 14.063
[in2]

Plastic modulus of net section
Znet
 = ( bp x t2p ) / 4
 = 65.92
[in3]

Flexural strength available
Mc
 = φ Fu Znet     φ=0.75
 = 267.79
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 16.84
[kip-ft]

 
Shear strength available
Vc
 = from shear rupture check
 = 411.3
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 181.8
[kips]

 
Flexural rupture interaction
ratio
 = (
Vr/Vc
)2 + (
Mr/Mc
)2
 = 0.20
AISC 15th  Eq 10-5
 < 1.0
OK
 
 
Gusset to Column Weld Strength
ratio = 14.30 / 14.64
0.98
PASS
Gusset to Column Interface - Forces
shear Vc
 = 181.8
[kips]
axial Hc
 = -132.5
[kips]   in tension
moment Mc
 = 16.84
[kip-ft]

Gusset to Column Interface - Weld Length
Gusset-column fillet weld length
Lwc
 = from user input
 = 18.750
[in]

Gusset to Column Interface - Combined Weld Stress
Weld stress from axial force
fa
 = Hc / Lwc
 = -7.067
[kip/in]
in tension
Weld stress from shear force
fv
 = Vc / Lwc
 = 9.696
[kip/in]

Weld stress from moment force
fb
 = 
M/L2 / 6
 = 3.449
[kip/in]

Weld stress combined - max
fmax
 = [ (fa - fb )2 + f2v ]0.5
 = 14.303
[kip/in]
AISC 15th  Eq 8-11
Weld resultant load angle
θ
 = tan-1 [( fb - fa ) / fv ]
 = 47.3
[°]

Fillet Weld Strength Calc
Fillet weld leg size
w
 = 516
[in]
load angle θ
 = 47.3
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 2   for double fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.32
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 24.408
[kip/in]
AISC 15th  Eq 8-1


Base metal - gusset plate
thickness t
 = 0.750
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - gusset plate is in shear, shear rupture as per AISC 15th  Eq J4-4 is checked
AISC 15th  J2.4
Base metal shear rupture
Rn-b
 = 0.6 Fu t
 = 29.250
[kip/in]
AISC 15th  Eq J4-4


Double fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 24.408
[kip/in]
AISC 15th  Eq 9-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 18.306
[kip/in]

 
When gusset plate is directly welded to beam or column, apply 1.25 ductility factor
to allow adequate force redistribution in the weld group
AISC 15th  Page 13-11
 
Weld strength used for design after applying ductility factor
φ Rn
 = φ Rn x ( 1/1.25 )
 = 14.645
[kip/in]

ratio
 = 0.98
 > fmax
OK
 
 
Column Web Local Yielding
ratio = 175.6 / 814.4
0.22
PASS
Gusset Edge Equivalent Normal Force


Refer to AISC DG29  Fig. B-1 for formula below to calculate gusset edge equivalent normal force
 
Gusset edge axial force
N
 = 
 = -132.5
[kips]

Gusset edge moment force
M
 = 
 = 16.84
[kip-ft]

Gusset edge interface length
L
 = 
 = 18.750
[in]

Gusset edge equivalent normal force
Ne
 = N -
4 M/L
 = -175.6
[kips]
AISC DG29  Fig B-1


 
Concentrated force from gusset
Pu
 = 
 = 175.6
[kips]

Column section
d
 = 12.900
[in]
tf
 = 0.990
[in]

tw
 = 0.610
[in]
k
 = 1.590
[in]

yield Fy
 = 50.0
[ksi]



Length of bearing
lb
 = Gusset/Column interface length
 = 18.750
[in]

Column web local yielding strength
Rn
 = Fy tw ( 5 k + lb )
 = 814.4
[kips]
AISC 15th  Eq J10-2
Resistance factor-LRFD
φ
 = 1.00
φ Rn
 = 
 = 814.4
[kips]

ratio
 = 0.22
 > Pu
OK
 
Column Web Shear Strength
ratio = 132.5 / 236.1
0.56
PASS
W Shape Column Shear Strength Check



W sect W12X106
d
 = 12.900
[in]
tw
 = 0.610
[in]

Fy
 = 50.0
[ksi]



Gusset to column axial force
Vu
 = from gusset interface force calc
 = 132.5
[kips]

 
Column shear strength
Rn
 = 0.6 Fy d tw
 = 236.1
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 236.1
[kips]

ratio
 = 0.56
 > Vu
OK
 
 
 
 

Bot Brace - Gusset to Beam
Direct Weld Connection
Code=AISC 360-16 LRFD

Result Summary
geometries & weld limitations = PASS
limit states max ratio 
0.82
PASS
 
 
Brace Weld Limitation Checks - Gusset to Beam
PASS
Min Fillet Weld Size


Thinner part joined thickness
t
 = 
 = 0.750
[in]

Min fillet weld size allowed
wmin
 = 
 = 0.250
[in]
AISC 15th  Table J2.4
Fillet weld size provided
w
 = 
 = 0.438
[in]

 ≥ wmin
OK
Min Fillet Weld Length


Fillet weld size provided
w
 = 
 = 0.438
[in]

Min fillet weld length allowed
Lmin
 = 4 x w
 = 1.750
[in]
AISC 15th  J2.2b
Min fillet weld length
L
 = 
 = 27.500
[in]

 ≥ Lmin
OK
 
 
 
 
Seismic SCBF LC3
P1 =-559.7 kips (T)
P2 =157.3 kips (C)
ratio = 0.18
PASS

Gusset Plate - Shear Yielding
ratio = 77.4 / 618.8
0.13
PASS
Plate Shear Yielding Check



Plate size
width bp
 = 27.500
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Agv
 = bp tp
 = 20.625
[in2]

Shear force required
Vu
 = 
 = 77.4
[kips]

Plate shear yielding strength
Rn
 = 0.6 Fy Agv
 = 618.8
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 618.8
[kips]

ratio
 = 0.13
 > Vu
OK
 
Gusset Plate - Shear Rupture
ratio = 77.4 / 603.3
0.13
PASS
Plate Shear Rupture Check



Plate size
width bp
 = 27.500
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in shear
Anv
 = bp tp
 = 20.625
[in2]

Shear force in demand
Vu
 = 
 = 77.4
[kips]

Plate shear rupture strength
Rn
 = 0.6 Fu Anv
 = 804.4
[kips]
AISC 15th  Eq J4-4
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-4
φ Rn
 = 
 = 603.3
[kips]

ratio
 = 0.13
 > Vu
OK
 
 
Gusset Plate - Axial Tensile Yield
ratio = 64.8 / 928.1
0.07
PASS
Plate Tensile Yielding Check



Plate size
width bp
 = 27.500
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Ag
 = bp tp
 = 20.625
[in2]

Tensile force required
Pu
 = 
 = 64.8
[kips]

Plate tensile yielding strength
Rn
 = Fy Ag
 = 1031.3
[kips]
AISC 15th  Eq J4-1
Resistance factor-LRFD
φ
 = 0.90
AISC 15th  Eq J4-1
φ Rn
 = 
 = 928.1
[kips]

ratio
 = 0.07
 > Pu
OK
 
 
Gusset Plate - Flexural Yield Interact
ratio =
0.02
PASS
Gusset plate
width bp
 = 27.500
[in]
thick tp
 = 0.750
[in]

yield Fy
 = 50.0
[ksi]

Shear plate - gross area
Ag
 = bp x tp
 = 20.625
[in2]

Shear plate - plastic modulus
Zp
 = ( bp x t2p ) / 4
 = 141.80
[in3]

Flexural strength available
Mc
 = φ Fy Zp     φ=0.90
 = 531.74
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 0.00
[kip-ft]

 
Axial strength available
Pc
 = from axial tensile yield check
 = 928.1
[kips]

Axial strength required
Pr
 = from gusset interface forces calc
 = 64.8
[kips]

 
Shear strength available
Vc
 = from shear yielding check
 = 618.8
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 77.4
[kips]

 
Flexural yield interaction
ratio
 = (
Vr/Vc
)2 + (
Pr/Pc
+
Mr/Mc
)2
 = 0.02
AISC 15th  Eq 10-5
 < 1.0
OK
 
Gusset Plate - Flexural Rupture Interact
ratio =
0.02
PASS
Gusset plate
width bp
 = 27.500
[in]
thick tp
 = 0.750
[in]

tensile Fu
 = 65.0
[ksi]

Net area of plate
An
 = bp x tp
 = 20.625
[in2]

Plastic modulus of net section
Znet
 = ( bp x t2p ) / 4
 = 141.80
[in3]

Flexural strength available
Mc
 = φ Fu Znet     φ=0.75
 = 576.05
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 0.00
[kip-ft]

 
Shear strength available
Vc
 = from shear rupture check
 = 603.3
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 77.4
[kips]

 
Flexural rupture interaction
ratio
 = (
Vr/Vc
)2 + (
Mr/Mc
)2
 = 0.02
AISC 15th  Eq 10-5
 < 1.0
OK
 
 
Gusset to Beam Weld Strength
ratio = 2.81 / 15.59
0.18
PASS
Gusset to Beam Interface - Forces
shear Hb
 = 77.4
[kips]
axial Vb
 = 64.8
[kips]   in compression
moment Mb
 = 0.00
[kip-ft]

 
Gusset-beam fillet weld length
Lw
 = 
 = 27.500
[in]

Gusset to Beam Interface - Combined Weld Stress
Weld stress from axial force
fa
 = Vb / Lwb
 = 0.000
[kip/in]
in compression
Weld stress from shear force
fv
 = Hb / Lwb
 = 2.815
[kip/in]

Weld stress from moment force
fb
 = 
M/L2 / 6
 = 0.000
[kip/in]

Weld stress combined - max
fmax
 = fv
 = 2.815
[kip/in]
AISC 15th  Eq 8-11
Weld resultant load angle
θ
 = weld only has shear component
 = 0.0
[°]

Fillet Weld Strength Calc
Fillet weld leg size
w
 = 716
[in]
load angle θ
 = 0.0
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 2   for double fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.00
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 25.982
[kip/in]
AISC 15th  Eq 8-1


Base metal - gusset plate
thickness t
 = 0.750
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - gusset plate is in shear, shear rupture as per AISC 15th  Eq J4-4 is checked
AISC 15th  J2.4
Base metal shear rupture
Rn-b
 = 0.6 Fu t
 = 29.250
[kip/in]
AISC 15th  Eq J4-4


Double fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 25.982
[kip/in]
AISC 15th  Eq 9-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 19.487
[kip/in]

 
When gusset plate is directly welded to beam or column, apply 1.25 ductility factor
to allow adequate force redistribution in the weld group
AISC 15th  Page 13-11
 
Weld strength used for design after applying ductility factor
φ Rn
 = φ Rn x ( 1/1.25 )
 = 15.589
[kip/in]

ratio
 = 0.18
 > fmax
OK
 
 
Beam Web Local Yielding
ratio = 64.8 / 1022.9
0.06
PASS
 
Concentrated force from gusset
Pu
 = 
 = 64.8
[kips]

Beam section
d
 = 24.700
[in]
tf
 = 1.090
[in]

tw
 = 0.650
[in]
k
 = 1.590
[in]

yield Fy
 = 50.0
[ksi]



Length of bearing
lb
 = Gusset/Beam interface length
 = 27.500
[in]

Gusset plate corner clip
clip
 = from user input
 = 1.000
[in]

Distance from normal force applied point to member end
lN
 = 0.5 lb + clip
 = 14.750
[in]

 
when lN  ≤ d , use AISC 15th  Eq J10-3
AISC 15th  Eq J10-3
 
Beam web local yielding strength
Rn
 = Fy tw ( 2.5 k + lb )
 = 1022.9
[kips]
AISC 15th  Eq J10-3
Resistance factor-LRFD
φ
 = 1.00
φ Rn
 = 
 = 1022.9
[kips]

ratio
 = 0.06
 > Pu
OK
 
Beam Web Local Crippling
ratio = 64.8 / 1003.3
0.06
PASS
 
Concentrated force from gusset
Pu
 = 
 = 64.8
[kips]

Beam section
d
 = 24.700
[in]
tf
 = 1.090
[in]

tw
 = 0.650
[in]
k
 = 1.590
[in]

yield Fy
 = 50.0
[ksi]
E
 = 29000
[ksi]



Length of bearing
lb
 = Gusset/Beam interface length
 = 27.500
[in]

Gusset plate corner clip
clip
 = from user input
 = 1.000
[in]

Distance from normal force applied point to member end
lN
 = 0.5 lb + clip
 = 14.750
[in]

 
when lN  ≥ d/2 , use Eq J10-4
AISC 15th  Eq J10-4
Beam web local crippling strength
Rn
 = 0.8 t2w [1+3
lb/d
(
tw/tf
)1.5 ] x
 = 1337.7
[kips]
AISC 15th  Eq J10-4
(
E Fy tf/tw
)0.5

Resistance factor-LRFD
φ
 = 0.75
AISC 15th  J10.3
φRn
 = 
 = 1003.3
[kips]

ratio
 = 0.06
 > Pu
OK
 
 
 
 
Seismic SCBF LC4
P1 =134.7 kips (C)
P2 =-615.9 kips (T)
ratio = 0.82
PASS

Gusset Plate - Shear Yielding
ratio = 303.0 / 618.8
0.49
PASS
Plate Shear Yielding Check



Plate size
width bp
 = 27.500
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Agv
 = bp tp
 = 20.625
[in2]

Shear force required
Vu
 = 
 = 303.0
[kips]

Plate shear yielding strength
Rn
 = 0.6 Fy Agv
 = 618.8
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 618.8
[kips]

ratio
 = 0.49
 > Vu
OK
 
Gusset Plate - Shear Rupture
ratio = 303.0 / 603.3
0.50
PASS
Plate Shear Rupture Check



Plate size
width bp
 = 27.500
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in shear
Anv
 = bp tp
 = 20.625
[in2]

Shear force in demand
Vu
 = 
 = 303.0
[kips]

Plate shear rupture strength
Rn
 = 0.6 Fu Anv
 = 804.4
[kips]
AISC 15th  Eq J4-4
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-4
φ Rn
 = 
 = 603.3
[kips]

ratio
 = 0.50
 > Vu
OK
 
 
Gusset Plate - Axial Yield
ratio = 253.7 / 928.1
0.27
PASS
Plate Tensile Yielding Check



Plate size
width bp
 = 27.500
[in]
thickness tp
 = 0.750
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Ag
 = bp tp
 = 20.625
[in2]

Tensile force required
Pu
 = 
 = 253.7
[kips]

Plate tensile yielding strength
Rn
 = Fy Ag
 = 1031.3
[kips]
AISC 15th  Eq J4-1
Resistance factor-LRFD
φ
 = 0.90
AISC 15th  Eq J4-1
φ Rn
 = 
 = 928.1
[kips]

ratio
 = 0.27
 > Pu
OK
 
Gusset Plate - Axial Tensile Rupture
ratio = 253.7 / 1005.5
0.25
PASS
Plate Tensile Rupture Check



Plate size
width bp
 = 27.500
[in]
thickness tp
 = 0.750
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in tension
Ant
 = bp tp
 = 20.625
[in2]

Tensile force required
Pu
 = 
 = 253.7
[kips]

Plate tensile rupture strength
Rn
 = Fu Ant
 = 1340.6
[kips]
AISC 15th  Eq J4-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-2
φ Rn
 = 
 = 1005.5
[kips]
AISC 15th  Eq J4-2
ratio
 = 0.25
 > Pu
OK
 
 
Gusset Plate - Flexural Yield Interact
ratio =
0.31
PASS
Gusset plate
width bp
 = 27.500
[in]
thick tp
 = 0.750
[in]

yield Fy
 = 50.0
[ksi]

Shear plate - gross area
Ag
 = bp x tp
 = 20.625
[in2]

Shear plate - plastic modulus
Zp
 = ( bp x t2p ) / 4
 = 141.80
[in3]

Flexural strength available
Mc
 = φ Fy Zp     φ=0.90
 = 531.74
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 0.00
[kip-ft]

 
Axial strength available
Pc
 = from axial tensile yield check
 = 928.1
[kips]

Axial strength required
Pr
 = from gusset interface forces calc
 = -253.7
[kips]

 
Shear strength available
Vc
 = from shear yielding check
 = 618.8
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 303.0
[kips]

 
Flexural yield interaction
ratio
 = (
Vr/Vc
)2 + (
Pr/Pc
+
Mr/Mc
)2
 = 0.31
AISC 15th  Eq 10-5
 < 1.0
OK
 
Gusset Plate - Flexural Rupture Interact
ratio =
0.32
PASS
Gusset plate
width bp
 = 27.500
[in]
thick tp
 = 0.750
[in]

tensile Fu
 = 65.0
[ksi]

Net area of plate
An
 = bp x tp
 = 20.625
[in2]

Plastic modulus of net section
Znet
 = ( bp x t2p ) / 4
 = 141.80
[in3]

Flexural strength available
Mc
 = φ Fu Znet     φ=0.75
 = 576.05
[kip-ft]

Flexural strength required
Mr
 = from gusset interface forces calc
 = 0.00
[kip-ft]

 
Axial strength available
Pc
 = from axial tensile rupture check
 = 1005.5
[kips]

Axial strength required
Pr
 = from gusset interface forces calc
 = -253.7
[kips]

 
Shear strength available
Vc
 = from shear rupture check
 = 603.3
[kips]

Shear strength required
Vr
 = from gusset interface forces calc
 = 303.0
[kips]

 
Flexural rupture interaction
ratio
 = (
Vr/Vc
)2 + (
Pr/Pc
+
Mr/Mc
)2
 = 0.32
AISC 15th  Eq 10-5
 < 1.0
OK
 
 
Gusset to Beam Weld Strength
ratio = 14.37 / 17.55
0.82
PASS
Gusset to Beam Interface - Forces
shear Hb
 = 303.0
[kips]
axial Vb
 = -253.7
[kips]   in tension
moment Mb
 = 0.00
[kip-ft]

 
Gusset-beam fillet weld length
Lw
 = 
 = 27.500
[in]

Gusset to Beam Interface - Combined Weld Stress
Weld stress from axial force
fa
 = Vb / Lwb
 = -9.225
[kip/in]
in tension
Weld stress from shear force
fv
 = Hb / Lwb
 = 11.018
[kip/in]

Weld stress from moment force
fb
 = 
M/L2 / 6
 = 0.000
[kip/in]

Weld stress combined - max
fmax
 = [ (fa - fb )2 + f2v ]0.5
 = 14.370
[kip/in]
AISC 15th  Eq 8-11
Weld resultant load angle
θ
 = tan-1 [( fb - fa ) / fv ]
 = 39.9
[°]

Fillet Weld Strength Calc
Fillet weld leg size
w
 = 716
[in]
load angle θ
 = 39.9
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 2   for double fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.26
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 32.665
[kip/in]
AISC 15th  Eq 8-1


Base metal - gusset plate
thickness t
 = 0.750
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - gusset plate is in shear, shear rupture as per AISC 15th  Eq J4-4 is checked
AISC 15th  J2.4
Base metal shear rupture
Rn-b
 = 0.6 Fu t
 = 29.250
[kip/in]
AISC 15th  Eq J4-4


Double fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 29.250
[kip/in]
AISC 15th  Eq 9-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 21.938
[kip/in]

 
When gusset plate is directly welded to beam or column, apply 1.25 ductility factor
to allow adequate force redistribution in the weld group
AISC 15th  Page 13-11
 
Weld strength used for design after applying ductility factor
φ Rn
 = φ Rn x ( 1/1.25 )
 = 17.550
[kip/in]

ratio
 = 0.82
 > fmax
OK
 
 
Beam Web Local Yielding
ratio = 253.7 / 1022.9
0.25
PASS
 
Concentrated force from gusset
Pu
 = 
 = 253.7
[kips]

Beam section
d
 = 24.700
[in]
tf
 = 1.090
[in]

tw
 = 0.650
[in]
k
 = 1.590
[in]

yield Fy
 = 50.0
[ksi]



Length of bearing
lb
 = Gusset/Beam interface length
 = 27.500
[in]

Gusset plate corner clip
clip
 = from user input
 = 1.000
[in]

Distance from normal force applied point to member end
lN
 = 0.5 lb + clip
 = 14.750
[in]

 
when lN  ≤ d , use AISC 15th  Eq J10-3
AISC 15th  Eq J10-3
 
Beam web local yielding strength
Rn
 = Fy tw ( 2.5 k + lb )
 = 1022.9
[kips]
AISC 15th  Eq J10-3
Resistance factor-LRFD
φ
 = 1.00
φ Rn
 = 
 = 1022.9
[kips]

ratio
 = 0.25
 > Pu
OK
 
 
 

Beam to Column
Direct Weld Connection
Code=AISC 360-16 LRFD

Result Summary
geometries & weld limitations = PASS
limit states max ratio 
0.69
PASS
 
 
Beam Flange Fillet Weld Limitation
PASS
Min Fillet Weld Size


Thinner part joined thickness
t
 = 
 = 0.990
[in]

Min fillet weld size allowed
wmin
 = 
 = 0.313
[in]
AISC 15th  Table J2.4
Fillet weld size provided
w
 = 
 = 0.313
[in]

 ≥ wmin
OK
Min Fillet Weld Length


Fillet weld size provided
w
 = 
 = 0.313
[in]

Min fillet weld length allowed
Lmin
 = 4 x w
 = 1.250
[in]
AISC 15th  J2.2b
Min fillet weld length
L
 = 0.5 bfb - k1b
 = 4.975
[in]

 ≥ Lmin
OK
 
Beam Web Fillet Weld Limitation
PASS
Min Fillet Weld Size


Thinner part joined thickness
t
 = 
 = 0.650
[in]

Min fillet weld size allowed
wmin
 = 
 = 0.250
[in]
AISC 15th  Table J2.4
Fillet weld size provided
w
 = 
 = 0.563
[in]

 ≥ wmin
OK
Min Fillet Weld Length


Fillet weld size provided
w
 = 
 = 0.563
[in]

Min fillet weld length allowed
Lmin
 = 4 x w
 = 2.250
[in]
AISC 15th  J2.2b
Min fillet weld length
L
 = db - 2 kb
 = 20.700
[in]

 ≥ Lmin
OK
 
 
 
Seismic SCBF LC3
shear V = 283.9 kips     axial P = 118.6 kips (C)
ratio = 0.59
PASS

Beam to Column - Beam Shear
ratio = 283.9 / 481.7
0.59
PASS
W Shape Beam Shear Yielding Check



W sect W24X146
d
 = 24.700
[in]
tw
 = 0.650
[in]

Fy
 = 50.0
[ksi]



Beam to column shear
Vu
 = from gusset interface force calc
 = 283.9
[kips]

 
Beam shear strength
Rn
 = 0.6 Fy d tw
 = 481.7
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 481.7
[kips]

ratio
 = 0.59
 > Vu
OK
 
Beam to Column - Beam Stub Compressive Strength
ratio = 118.6 / 1935.0
0.06
PASS
W Shape Compression Check



W sect W24X146
A
 = 43.000
[in2]
ry
 = 3.022
[in]

Fy
 = 50.0
[ksi]

 
W sect effective length factor
K
 = 
 = 1.00

W sect unbraced length
L
 = 
 = 30.000
[in]

W sect slenderness
KL/r
 = 1.00 x L  / ry
 = 9.93

Compression force on W sect
Pu
 = 
 = 118.6
[kips]



when  
KL/r
  ≤  25
AISC 15th  J4.4 (a)
W sect compression provided
Rn
 = Fy x A
 = 2150.0
[kips]
AISC 15th  Eq J4-6
Resistance factor-LRFD
φ
 = 0.90
AISC 15th  J4.4 (a)
φ Rn
 = 
 = 1935.0
[kips]

ratio
 = 0.06
 > Pu
OK
 
 
Beam W Shape Axial Force Distribution
W Shape Beam Axial Force Distribution



W sect W24X146
d
 = 24.700
[in]
bf
 = 12.900
[in]

tf
 = 1.090
[in]
tw
 = 0.650
[in]

A
 = 43.000
[in2]



W shape one side flange area
Af
 = bf tf
 = 14.061
[in2]

W shape web area
Aw
 = A- 2 Af
 = 14.878
[in2]

W shape axial force
P
 = 
 = 118.6
[kips]

Axial force on flange
Pf
 = 
Af/A
P
 = 38.8
[kips]

Axial force on web
Pw
 = 
Aw/A
P
 = 41.0
[kips]

 
Beam to Column - W Shape Flange Weld
ratio = NA
0.00
PASS
 
Beam flange tensile force
Pu
 = from beam axial force distribution calc
 = 38.8
[kips]

 
Beam flange force is in compression, the flange weld check is not needed
 
 
Beam to Column - W Shape Web Weld
ratio = 13.71 / 25.05
0.55
PASS
 
Beam section W24X146
db
 = 24.700
[in]
kb
 = 2.000
[in]

Fillet weld length on beam web
L
 = db - 2 kb
 = 20.700
[in]

Weld Group Forces
Weld group forces
shear V
 = 283.9
[kips]
axial P
 = 41.0
[kips]   in compression
 
Beam web fillet weld size
w
 = 
 = 0.563
[in]

 
Combined Weld Stress
Weld stress from axial force
fa
 = P / L
 = 0.000
[kip/in]
in compression
Weld stress from shear force
fv
 = V / L
 = 13.715
[kip/in]

Weld stress combined - max
fmax
 = fv
 = 13.715
[kip/in]
AISC 15th  Eq 8-11
Weld stress load angle
θ
 = 
 = 0.0
[°]

Fillet Weld Strength Calc
Fillet weld leg size
w
 = 916
[in]
load angle θ
 = 0.0
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 2   for double fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.00
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 33.406
[kip/in]
AISC 15th  Eq 8-1


Base metal - beam web
thickness t
 = 0.650
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - beam web is in tension, tensile rupture as per AISC 15th  Eq J4-2 is checked
AISC 15th  J2.4
Base metal tensile rupture
Rn-b
 = Fu t
 = 42.250
[kip/in]
AISC 15th  Eq J4-2


Double fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 33.406
[kip/in]
AISC 15th  Eq 9-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 25.054
[kip/in]

ratio
 = 0.55
 > fmax
OK
 
 
Column Web Local Yielding - Beam Flange
ratio = 38.8 / 275.7
0.14
PASS
Column Web Local Yielding at Beam Flange Location



Column sect W12X106
kc
 = 1.590
[in]
twc
 = 0.610
[in]

Fyc
 = 50.0
[ksi]

 
Beam section W24X146
tfb
 = 1.090
[in]



Beam flange force
Pu
 = from beam axial force distribution calc
 = 38.8
[kips]

 
Column web local yielding strength
Rn
 = Fyc twc (5 kc + tfb )
 = 275.7
[kips]
AISC 15th  Eq 4-2
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq 4-2
φ Rn
 = 
 = 275.7
[kips]

ratio
 = 0.14
 > Pu
OK
 
Column Web Local Yielding - Beam Web
ratio = 41.0 / 631.4
0.06
PASS
Column Web Local Yielding at Beam Web Location



Column sect W12X106
kc
 = 1.590
[in]
twc
 = 0.610
[in]

Fyc
 = 50.0
[ksi]

 
Beam section W24X146
Tb
 = 20.700
[in]



Beam axial force on beam web
Pu
 = from beam axial force distribution calc
 = 41.0
[kips]

 
Column web local yielding strength
Rn
 = Fyc twc Tb
 = 631.4
[kips]
AISC 15th  Eq J10-2
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  J10.2
φ Rn
 = 
 = 631.4
[kips]

ratio
 = 0.06
 > Pu
OK
 
Column Web Local Crippling - Beam Web
ratio = 118.6 / 1139.9
0.10
PASS
Column Web Local Crippling at Beam Web Location



Column sect W12X106
dc
 = 12.900
[in]
tfc
 = 0.990
[in]

twc
 = 0.610
[in]

Fyc
 = 50.0
[ksi]
E
 = 29000
[ksi]

 
Beam section W24X146
Tb
 = 20.700
[in]



Beam web compression force
Pu
 = from beam axial force distribution calc
 = 118.6
[kips]

Column web local crippling strength
Rn
 = 0.8 t2wc [1+3
Tb/dc
(
twc/tfc
)1.5 ] x
 = 1519.9
[kips]
AISC 15th  Eq J10-4
(
E Fcy tfc/twc
)0.5

Resistance factor-LRFD
φ
 = 0.75
AISC 15th  J10.3
φRn
 = 
 = 1139.9
[kips]

ratio
 = 0.10
 > Pu
OK
 
 
 
Seismic SCBF LC4
shear V = 331.1 kips     axial P = 130.1 kips (C)
ratio = 0.69
PASS

Beam to Column - Beam Shear
ratio = 331.1 / 481.7
0.69
PASS
W Shape Beam Shear Yielding Check



W sect W24X146
d
 = 24.700
[in]
tw
 = 0.650
[in]

Fy
 = 50.0
[ksi]



Beam to column shear
Vu
 = from gusset interface force calc
 = 331.1
[kips]

 
Beam shear strength
Rn
 = 0.6 Fy d tw
 = 481.7
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 481.7
[kips]

ratio
 = 0.69
 > Vu
OK
 
Beam to Column - Beam Stub Compressive Strength
ratio = 130.1 / 1935.0
0.07
PASS
W Shape Compression Check



W sect W24X146
A
 = 43.000
[in2]
ry
 = 3.022
[in]

Fy
 = 50.0
[ksi]

 
W sect effective length factor
K
 = 
 = 1.00

W sect unbraced length
L
 = 
 = 30.000
[in]

W sect slenderness
KL/r
 = 1.00 x L  / ry
 = 9.93

Compression force on W sect
Pu
 = 
 = 130.1
[kips]



when  
KL/r
  ≤  25
AISC 15th  J4.4 (a)
W sect compression provided
Rn
 = Fy x A
 = 2150.0
[kips]
AISC 15th  Eq J4-6
Resistance factor-LRFD
φ
 = 0.90
AISC 15th  J4.4 (a)
φ Rn
 = 
 = 1935.0
[kips]

ratio
 = 0.07
 > Pu
OK
 
 
Beam W Shape Axial Force Distribution
W Shape Beam Axial Force Distribution



W sect W24X146
d
 = 24.700
[in]
bf
 = 12.900
[in]

tf
 = 1.090
[in]
tw
 = 0.650
[in]

A
 = 43.000
[in2]



W shape one side flange area
Af
 = bf tf
 = 14.061
[in2]

W shape web area
Aw
 = A- 2 Af
 = 14.878
[in2]

W shape axial force
P
 = 
 = 130.1
[kips]

Axial force on flange
Pf
 = 
Af/A
P
 = 42.5
[kips]

Axial force on web
Pw
 = 
Aw/A
P
 = 45.0
[kips]

 
Beam to Column - W Shape Flange Weld
ratio = NA
0.00
PASS
 
Beam flange tensile force
Pu
 = from beam axial force distribution calc
 = 42.5
[kips]

 
Beam flange force is in compression, the flange weld check is not needed
 
 
Beam to Column - W Shape Web Weld
ratio = 16.00 / 25.05
0.64
PASS
 
Beam section W24X146
db
 = 24.700
[in]
kb
 = 2.000
[in]

Fillet weld length on beam web
L
 = db - 2 kb
 = 20.700
[in]

Weld Group Forces
Weld group forces
shear V
 = 331.1
[kips]
axial P
 = 45.0
[kips]   in compression
 
Beam web fillet weld size
w
 = 
 = 0.563
[in]

 
Combined Weld Stress
Weld stress from axial force
fa
 = P / L
 = 0.000
[kip/in]
in compression
Weld stress from shear force
fv
 = V / L
 = 15.995
[kip/in]

Weld stress combined - max
fmax
 = fv
 = 15.995
[kip/in]
AISC 15th  Eq 8-11
Weld stress load angle
θ
 = 
 = 0.0
[°]

Fillet Weld Strength Calc
Fillet weld leg size
w
 = 916
[in]
load angle θ
 = 0.0
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 2   for double fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.00
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 33.406
[kip/in]
AISC 15th  Eq 8-1


Base metal - beam web
thickness t
 = 0.650
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - beam web is in tension, tensile rupture as per AISC 15th  Eq J4-2 is checked
AISC 15th  J2.4
Base metal tensile rupture
Rn-b
 = Fu t
 = 42.250
[kip/in]
AISC 15th  Eq J4-2


Double fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 33.406
[kip/in]
AISC 15th  Eq 9-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 25.054
[kip/in]

ratio
 = 0.64
 > fmax
OK
 
 
Column Web Local Yielding - Beam Flange
ratio = 42.5 / 275.7
0.15
PASS
Column Web Local Yielding at Beam Flange Location



Column sect W12X106
kc
 = 1.590
[in]
twc
 = 0.610
[in]

Fyc
 = 50.0
[ksi]

 
Beam section W24X146
tfb
 = 1.090
[in]



Beam flange force
Pu
 = from beam axial force distribution calc
 = 42.5
[kips]

 
Column web local yielding strength
Rn
 = Fyc twc (5 kc + tfb )
 = 275.7
[kips]
AISC 15th  Eq 4-2
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq 4-2
φ Rn
 = 
 = 275.7
[kips]

ratio
 = 0.15
 > Pu
OK
 
Column Web Local Yielding - Beam Web
ratio = 45.0 / 631.4
0.07
PASS
Column Web Local Yielding at Beam Web Location



Column sect W12X106
kc
 = 1.590
[in]
twc
 = 0.610
[in]

Fyc
 = 50.0
[ksi]

 
Beam section W24X146
Tb
 = 20.700
[in]



Beam axial force on beam web
Pu
 = from beam axial force distribution calc
 = 45.0
[kips]

 
Column web local yielding strength
Rn
 = Fyc twc Tb
 = 631.4
[kips]
AISC 15th  Eq J10-2
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  J10.2
φ Rn
 = 
 = 631.4
[kips]

ratio
 = 0.07
 > Pu
OK
 
Column Web Local Crippling - Beam Web
ratio = 130.1 / 1139.9
0.11
PASS
Column Web Local Crippling at Beam Web Location



Column sect W12X106
dc
 = 12.900
[in]
tfc
 = 0.990
[in]

twc
 = 0.610
[in]

Fyc
 = 50.0
[ksi]
E
 = 29000
[ksi]

 
Beam section W24X146
Tb
 = 20.700
[in]



Beam web compression force
Pu
 = from beam axial force distribution calc
 = 130.1
[kips]

Column web local crippling strength
Rn
 = 0.8 t2wc [1+3
Tb/dc
(
twc/tfc
)1.5 ] x
 = 1519.9
[kips]
AISC 15th  Eq J10-4
(
E Fcy tfc/twc
)0.5

Resistance factor-LRFD
φ
 = 0.75
AISC 15th  J10.3
φRn
 = 
 = 1139.9
[kips]

ratio
 = 0.11
 > Pu
OK
 
 

Beam Splice Calculation
Brace Seismic System = SCBF
Code=AISC 360-16 LRFD

Result Summary
geometries & weld limitations = PASS
limit states max ratio 
0.61
PASS
 
 
Min Clearance Gap Between Beam Stub & Beam
PASS
 
Refer to AISC Seismic Design Manual 2nd Ed Page 5-235, in order to prevent binding at a 0.025 rad storey drift, the clearance between beam stub and beam at the splice must be at least (0.5 beam depth x 0.025 rad)
 
Beam sect W24X146 depth
d
 = 
 = 24.700
[in]

 
Min required gap between beam stub and beam
cmin
 = 0.5 d x 0.025 rad
 = 0.309
[in]

 
Actual gap between beam stub and beam
c
 = from user input
 = 1.000
[in]

 ≥ cmin
OK
 
Splice Plate Thickness Limit for Ductility
PASS
 
Bolt grade
grade
 = A325-X

Nominal tensile/shear stress
Ft
 = 90.0
[ksi]
Fv
 = 68.0
[ksi]
AISC 15th  Table J3.2
Bolt diameter & area
db
 = 0.875
[in]
Area Ab
 = 0.601
[in2]

Bolt group
row nv
 = 6
col nh
 = 2

row sv
 = 3.000
[in]
col sh
 = 3.000
[in]

Bolt group coefficient C'
C'
 = from AISC 15th  Table 7-6 ~ 7-13
 = 54.2

 
Splice plate thickness & depth
t
 = 0.375
[in]
d
 = 19.000
[in]

Fy
 = 50.0
[ksi]

 
Bolt group flexural strength
Mmax
 = 
Fv/0.9
( Ab C')
 = 205.08
[kip-ft]
AISC 15th  Eq 10-4
 
Max allowed splice plate thickness
tmax
 = 
6 Mmax/Fy d2
 = 0.818
[in]
AISC 15th  Eq 10-3
 
Splice plate thickness provided
2t
 = t x 2 sides
 = 0.750
[in]

 ≤ tmax
OK
 
 
 
 
Seismic SCBF LC3
shear V = 19.9 kips     axial P = 312.1 kips (C)
ratio = 0.61
PASS

Beam Web - Outer Side Bolt Group Eccentricity - Shear Only
 
Shear V - from user input, beam end shear reaction caused by gravity load only
ex         - hor distance from column face to the beam splice outer side bolt group CG point
 
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 0.0
[kips]

Resultant force to ver Y axis angle
θ
 = tan-1 (P / V)
 = 0.00
[°]



Bolt group row and column
bolt row nr
 = 6
bolt col nc
 = 2

Bolt row/column spacing
bolt row sr
 = 3.000
[in]
bolt col sc
 = 3.000
[in]

 
Shear force to bolt group CG ecc
ex
 = 
 = 34.500
[in]

 
Shear force to ver Y axis angle
θ
 = 
 = 0.00
[°]

 
Bolt group coefficient C
C
 = from AISC 15th  Table 7-6 ~ 7-13
 = 1.552

Bolt group eccentricity coefficient
Cec
 = C / ( nr x nc )
 = 0.129

 
Beam Web - Outer Side Bolt Group - Bolt Shear
ratio = 19.9 / 94.9
0.21
PASS
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 0.0
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 19.9
[kips]



Bolt shear stress
bolt grade
 = A325-X
Fnv
 = 68.0
[ksi]
AISC 15th  Table J3.2
bolt dia db
 = 0.875
[in]
bolt area Ab
 = 0.601
[in2]

Number of bolt carried shear
ns
 = 12.0
shear plane m
 = 2

Bolt group eccentricity coefficient
Cec
 = from 'Bolt Group Eccentricity' calc
 = 0.129

Required shear strength
Vu
 = 
 = 19.9
[kips]

Bolt shear strength
Rn
 = Fnv Ab ns m Cec
 = 126.6
[kips]
AISC 15th  Eq J3-1
Bolt resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J3-1
φ Rn
 = 
 = 94.9
[kips]

ratio
 = 0.21
 > Vu
OK
 
Beam Web - Outer Side Bolt Group - Bolt Bearing
ratio = 19.9 / 94.9
0.21
PASS
The bolt group is oriented so that the shear force V is in ver. direction and the axial force P is in hor. direction
 
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 0.0
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 19.9
[kips]

Single Bolt Shear Strength


Bolt shear stress
bolt grade
 = A325-X
Fnv
 = 68.0
[ksi]
AISC 15th  Table J3.2
bolt dia db
 = 0.875
[in]
bolt area Ab
 = 0.601
[in2]

Single bolt shear strength
Rn-bolt
 = 2 x Fnv Ab
 = 81.8
[kips]
AISC 15th  Eq J3-1
Bolt Bearing/TearOut Strength on Plate



Bolt hole diameter
bolt dia db
 = 78
[in]
bolt hole dia dh
 = 1516
[in]
AISC 15th  Table J3.3
Bolt spacing
spacing Ls
 = 3.000
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate thickness
t
 = 0.650
[in]

Interior Bolt



Bolt hole edge clear distance
Lc
 = Ls - dh
 = 2.063
[in]

Bolt tear out/bearing strength
Rn-t&b-in
 = 1.2 Lc t Fu ≤ 2.4 db t m Fu
AISC 15th  Eq J3-6a
 = 104.6 ≤ 88.7
 = 88.7
[kips]

Bolt strength at interior
Rn-in
 = min ( Rn-t&b-in , Rn-bolt )
 = 81.8
[kips]



Number of bolt
interior nin
 = 12

 
Bolt group eccentricity coefficient
Cec
 = from calc in above section
 = 0.129

 
Bolt bearing strength for all bolts
Rn
 = (nin Rn-in ) Cec
 = 126.6
[kips]

Required shear strength
Vu
 = 
 = 19.9
[kips]

Bolt resistance factor-LRFD
φ
 = 0.75
AISC 15th  J3-10
φ Rn
 = 
 = 94.9
[kips]

ratio
 = 0.21
 > Vu
OK
 
 
Beam Web - Inner Side Bolt Group Eccentricity - Shear Only
 
Shear V - from user input, beam end shear reaction caused by gravity load only
ex         - hor distance from column face to the beam splice inner side bolt group CG point
 
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 0.0
[kips]

Resultant force to ver Y axis angle
θ
 = tan-1 (P / V)
 = 0.00
[°]



Bolt group row and column
bolt row nr
 = 6
bolt col nc
 = 2

Bolt row/column spacing
bolt row sr
 = 3.000
[in]
bolt col sc
 = 3.000
[in]

 
Shear force to bolt group CG ecc
ex
 = 
 = 26.500
[in]

 
Shear force to ver Y axis angle
θ
 = 
 = 0.00
[°]

 
Bolt group coefficient C
C
 = from AISC 15th  Table 7-6 ~ 7-13
 = 2.007

Bolt group eccentricity coefficient
Cec
 = C / ( nr x nc )
 = 0.167

 
Beam Web - Inner Side Bolt Group - Bolt Shear
ratio = 19.9 / 122.9
0.16
PASS
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 0.0
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 19.9
[kips]



Bolt shear stress
bolt grade
 = A325-X
Fnv
 = 68.0
[ksi]
AISC 15th  Table J3.2
bolt dia db
 = 0.875
[in]
bolt area Ab
 = 0.601
[in2]

Number of bolt carried shear
ns
 = 12.0
shear plane m
 = 2

Bolt group eccentricity coefficient
Cec
 = from 'Bolt Group Eccentricity' calc
 = 0.167

Required shear strength
Vu
 = 
 = 19.9
[kips]

Bolt shear strength
Rn
 = Fnv Ab ns m Cec
 = 163.9
[kips]
AISC 15th  Eq J3-1
Bolt resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J3-1
φ Rn
 = 
 = 122.9
[kips]

ratio
 = 0.16
 > Vu
OK
 
Beam Web - Inner Side Bolt Group - Bolt Bearing
ratio = 19.9 / 122.9
0.16
PASS
The bolt group is oriented so that the shear force V is in ver. direction and the axial force P is in hor. direction
 
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 0.0
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 19.9
[kips]

Single Bolt Shear Strength


Bolt shear stress
bolt grade
 = A325-X
Fnv
 = 68.0
[ksi]
AISC 15th  Table J3.2
bolt dia db
 = 0.875
[in]
bolt area Ab
 = 0.601
[in2]

Single bolt shear strength
Rn-bolt
 = 2 x Fnv Ab
 = 81.8
[kips]
AISC 15th  Eq J3-1
Bolt Bearing/TearOut Strength on Plate



Bolt hole diameter
bolt dia db
 = 78
[in]
bolt hole dia dh
 = 1516
[in]
AISC 15th  Table J3.3
Bolt spacing
spacing Ls
 = 3.000
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate thickness
t
 = 0.650
[in]

Interior Bolt



Bolt hole edge clear distance
Lc
 = Ls - dh
 = 2.063
[in]

Bolt tear out/bearing strength
Rn-t&b-in
 = 1.2 Lc t Fu ≤ 2.4 db t m Fu
AISC 15th  Eq J3-6a
 = 104.6 ≤ 88.7
 = 88.7
[kips]

Bolt strength at interior
Rn-in
 = min ( Rn-t&b-in , Rn-bolt )
 = 81.8
[kips]



Number of bolt
interior nin
 = 12

 
Bolt group eccentricity coefficient
Cec
 = from calc in above section
 = 0.167

 
Bolt bearing strength for all bolts
Rn
 = (nin Rn-in ) Cec
 = 163.9
[kips]

Required shear strength
Vu
 = 
 = 19.9
[kips]

Bolt resistance factor-LRFD
φ
 = 0.75
AISC 15th  J3-10
φ Rn
 = 
 = 122.9
[kips]

ratio
 = 0.16
 > Vu
OK
 
 
Beam Web - Inner Side Bolt Group Eccentricity - Shear + Axial
 
Shear V - from user input, beam end shear reaction caused by gravity load only
Axial  P -  from gusset interface forces calc , beam member axial load Pbm
ex         - hor distance from the gusset-beam weld line CG point to the beam splice inner side bolt group CG point
 
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 312.1
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 312.7
[kips]

Resultant force to ver Y axis angle
θ
 = tan-1 (P / V)
 = 86.35
[°]



Bolt group row and column
bolt row nr
 = 6
bolt col nc
 = 2

Bolt row/column spacing
bolt row sr
 = 3.000
[in]
bolt col sc
 = 3.000
[in]

 
Shear force to bolt group CG ecc
ex
 = 
 = 12.125
[in]

 
Shear force to ver Y axis angle
θ
 = 
 = 86.35
[°]

 
Bolt group coefficient C
C
 = from AISC 15th  Table 7-6 ~ 7-13
 = 10.595

Bolt group eccentricity coefficient
Cec
 = C / ( nr x nc )
 = 0.883

 
Beam Web - Inner Side Bolt Group - Bolt Shear
ratio = 312.7 / 649.9
0.48
PASS
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 312.1
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 312.7
[kips]



Bolt shear stress
bolt grade
 = A325-X
Fnv
 = 68.0
[ksi]
AISC 15th  Table J3.2
bolt dia db
 = 0.875
[in]
bolt area Ab
 = 0.601
[in2]

Number of bolt carried shear
ns
 = 12.0
shear plane m
 = 2

Bolt group eccentricity coefficient
Cec
 = from 'Bolt Group Eccentricity' calc
 = 0.883

Required shear strength
Vu
 = 
 = 312.7
[kips]

Bolt shear strength
Rn
 = Fnv Ab ns m Cec
 = 866.5
[kips]
AISC 15th  Eq J3-1
Bolt resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J3-1
φ Rn
 = 
 = 649.9
[kips]

ratio
 = 0.48
 > Vu
OK
 
Beam Web - Inner Side Bolt Group - Bolt Bearing
ratio = 312.7 / 633.4
0.49
PASS
The bolt group is oriented so that the shear force V is in ver. direction and the axial force P is in hor. direction
 
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 312.1
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 312.7
[kips]

Single Bolt Shear Strength


Bolt shear stress
bolt grade
 = A325-X
Fnv
 = 68.0
[ksi]
AISC 15th  Table J3.2
bolt dia db
 = 0.875
[in]
bolt area Ab
 = 0.601
[in2]

Single bolt shear strength
Rn-bolt
 = 2 x Fnv Ab
 = 81.8
[kips]
AISC 15th  Eq J3-1
Bolt Bearing/TearOut Strength on Plate



Bolt hole diameter
bolt dia db
 = 78
[in]
bolt hole dia dh
 = 1516
[in]
AISC 15th  Table J3.3
Bolt spacing & edge distance
spacing Ls
 = 3.000
[in]
edge distance Le
 = 2.000
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate thickness
t
 = 0.650
[in]

Interior Bolt



Bolt hole edge clear distance
Lc
 = Ls - dh
 = 2.063
[in]

Bolt tear out/bearing strength
Rn-t&b-in
 = 1.2 Lc t Fu ≤ 2.4 db t Fu
AISC 15th  Eq J3-6a
 = 104.6 ≤ 88.7
 = 88.7
[kips]

Bolt strength at interior
Rn-in
 = min ( Rn-t&b-in , Rn-bolt )
 = 81.8
[kips]

Edge Bolt



Bolt hole edge clear distance
Lc
 = Le - dh / 2
 = 1.531
[in]

Bolt tear out/bearing strength
Rn-t&b-ed
 = 1.2 Lc t Fu ≤ 2.4 db t Fu
AISC 15th  Eq J3-6a
 = 77.6 ≤ 88.7
 = 77.6
[kips]

Bolt strength at edge
Rn-ed
 = min ( Rn-t&b-ed , Rn-bolt )
 = 77.6
[kips]



Number of bolt
interior nin
 = 6
edge ned
 = 6

 
Bolt group eccentricity coefficient
Cec
 = from calc in above section
 = 0.883

 
Bolt bearing strength for all bolts
Rn
 = (nin Rn-in + ned Rn-ed ) Cec
 = 844.6
[kips]

Required shear strength
Vu
 = 
 = 312.7
[kips]

Bolt resistance factor-LRFD
φ
 = 0.75
AISC 15th  J3-10
φ Rn
 = 
 = 633.4
[kips]

ratio
 = 0.49
 > Vu
OK
 
 
Beam Web - Outer Side Bolt Group Eccentricity - Shear + Axial
 
Shear V - from user input, beam end shear reaction caused by gravity load only
Axial  P -  from gusset interface forces calc , beam member axial load Pbm
ex         - hor distance from the gusset-beam weld line CG point to the beam splice outer side bolt group CG point
 
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 312.1
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 312.7
[kips]

Resultant force to ver Y axis angle
θ
 = tan-1 (P / V)
 = 86.35
[°]



Bolt group row and column
bolt row nr
 = 6
bolt col nc
 = 2

Bolt row/column spacing
bolt row sr
 = 3.000
[in]
bolt col sc
 = 3.000
[in]

 
Shear force to bolt group CG ecc
ex
 = 
 = 20.125
[in]

 
Shear force to ver Y axis angle
θ
 = 
 = 86.35
[°]

 
Bolt group coefficient C
C
 = from AISC 15th  Table 7-6 ~ 7-13
 = 9.943

Bolt group eccentricity coefficient
Cec
 = C / ( nr x nc )
 = 0.829

 
Beam Web - Outer Side Bolt Group - Bolt Shear
ratio = 312.7 / 610.2
0.51
PASS
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 312.1
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 312.7
[kips]



Bolt shear stress
bolt grade
 = A325-X
Fnv
 = 68.0
[ksi]
AISC 15th  Table J3.2
bolt dia db
 = 0.875
[in]
bolt area Ab
 = 0.601
[in2]

Number of bolt carried shear
ns
 = 12.0
shear plane m
 = 2

Bolt group eccentricity coefficient
Cec
 = from 'Bolt Group Eccentricity' calc
 = 0.829

Required shear strength
Vu
 = 
 = 312.7
[kips]

Bolt shear strength
Rn
 = Fnv Ab ns m Cec
 = 813.5
[kips]
AISC 15th  Eq J3-1
Bolt resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J3-1
φ Rn
 = 
 = 610.2
[kips]

ratio
 = 0.51
 > Vu
OK
 
Beam Web - Outer Side Bolt Group - Bolt Bearing
ratio = 312.7 / 594.7
0.53
PASS
The bolt group is oriented so that the shear force V is in ver. direction and the axial force P is in hor. direction
 
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 312.1
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 312.7
[kips]

Single Bolt Shear Strength


Bolt shear stress
bolt grade
 = A325-X
Fnv
 = 68.0
[ksi]
AISC 15th  Table J3.2
bolt dia db
 = 0.875
[in]
bolt area Ab
 = 0.601
[in2]

Single bolt shear strength
Rn-bolt
 = 2 x Fnv Ab
 = 81.8
[kips]
AISC 15th  Eq J3-1
Bolt Bearing/TearOut Strength on Plate



Bolt hole diameter
bolt dia db
 = 78
[in]
bolt hole dia dh
 = 1516
[in]
AISC 15th  Table J3.3
Bolt spacing & edge distance
spacing Ls
 = 3.000
[in]
edge distance Le
 = 2.000
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate thickness
t
 = 0.650
[in]

Interior Bolt



Bolt hole edge clear distance
Lc
 = Ls - dh
 = 2.063
[in]

Bolt tear out/bearing strength
Rn-t&b-in
 = 1.2 Lc t Fu ≤ 2.4 db t Fu
AISC 15th  Eq J3-6a
 = 104.6 ≤ 88.7
 = 88.7
[kips]

Bolt strength at interior
Rn-in
 = min ( Rn-t&b-in , Rn-bolt )
 = 81.8
[kips]

Edge Bolt



Bolt hole edge clear distance
Lc
 = Le - dh / 2
 = 1.531
[in]

Bolt tear out/bearing strength
Rn-t&b-ed
 = 1.2 Lc t Fu ≤ 2.4 db t Fu
AISC 15th  Eq J3-6a
 = 77.6 ≤ 88.7
 = 77.6
[kips]

Bolt strength at edge
Rn-ed
 = min ( Rn-t&b-ed , Rn-bolt )
 = 77.6
[kips]



Number of bolt
interior nin
 = 6
edge ned
 = 6

 
Bolt group eccentricity coefficient
Cec
 = from calc in above section
 = 0.829

 
Bolt bearing strength for all bolts
Rn
 = (nin Rn-in + ned Rn-ed ) Cec
 = 792.9
[kips]

Required shear strength
Vu
 = 
 = 312.7
[kips]

Bolt resistance factor-LRFD
φ
 = 0.75
AISC 15th  J3-10
φ Rn
 = 
 = 594.7
[kips]

ratio
 = 0.53
 > Vu
OK
 
 
Splice Plate - Outer Side Bolt Group Eccentricity - Shear Only
 
Shear V - from user input, beam end shear reaction caused by gravity load only
ex         - hor distance from column face to the beam splice outer side bolt group CG point
 
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 0.0
[kips]

Resultant force to ver Y axis angle
θ
 = tan-1 (P / V)
 = 0.00
[°]



Bolt group row and column
bolt row nr
 = 6
bolt col nc
 = 2

Bolt row/column spacing
bolt row sr
 = 3.000
[in]
bolt col sc
 = 3.000
[in]

 
Shear force to bolt group CG ecc
ex
 = 
 = 34.500
[in]

 
Shear force to ver Y axis angle
θ
 = 
 = 0.00
[°]

 
Bolt group coefficient C
C
 = from AISC 15th  Table 7-6 ~ 7-13
 = 1.552

Bolt group eccentricity coefficient
Cec
 = C / ( nr x nc )
 = 0.129

 
Splice Plate - Outer Side Bolt Group - Bolt Bearing
ratio = 10.0 / 47.5
0.21
PASS
The bolt group is oriented so that the shear force V is in ver. direction and the axial force P is in hor. direction
 
Bolt group forces
shear V
 = 10.0
[kips]
axial P
 = 0.0
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 10.0
[kips]

Single Bolt Shear Strength


Bolt shear stress
bolt grade
 = A325-X
Fnv
 = 68.0
[ksi]
AISC 15th  Table J3.2
bolt dia db
 = 0.875
[in]
bolt area Ab
 = 0.601
[in2]

Single bolt shear strength
Rn-bolt
 = Fnv Ab
 = 40.9
[kips]
AISC 15th  Eq J3-1
Bolt Bearing/TearOut Strength on Plate



Bolt hole diameter
bolt dia db
 = 78
[in]
bolt hole dia dh
 = 1516
[in]
AISC 15th  Table J3.3
Bolt spacing
spacing Ls
 = 3.000
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate thickness
t
 = 0.375
[in]

Interior Bolt



Bolt hole edge clear distance
Lc
 = Ls - dh
 = 2.063
[in]

Bolt tear out/bearing strength
Rn-t&b-in
 = 1.2 Lc t Fu ≤ 2.4 db t m Fu
AISC 15th  Eq J3-6a
 = 60.3 ≤ 51.2
 = 51.2
[kips]

Bolt strength at interior
Rn-in
 = min ( Rn-t&b-in , Rn-bolt )
 = 40.9
[kips]



Number of bolt
interior nin
 = 12

 
Bolt group eccentricity coefficient
Cec
 = from calc in above section
 = 0.129

 
Bolt bearing strength for all bolts
Rn
 = (nin Rn-in ) Cec
 = 63.3
[kips]

Required shear strength
Vu
 = 
 = 10.0
[kips]

Bolt resistance factor-LRFD
φ
 = 0.75
AISC 15th  J3-10
φ Rn
 = 
 = 47.5
[kips]

ratio
 = 0.21
 > Vu
OK
 
 
Splice Plate - Compression Buckling
ratio = 156.1 / 256.1
0.61
PASS
Plate Compression Check



Plate size
width bp
 = 19.000
[in]
thickness tp
 = 0.375
[in]

Fy
 = 50.0
[ksi]
E
 = 29000
[ksi]

Plate gross area in compression
Ag
 = bp tp
 = 7.125
[in2]



Plate radius of gyration
r
 = tp / 12
 = 0.108
[in]

Plate effective length factor
K
 = 
 = 1.20
AISC 15th  Table C-A-7.1
Plate unbraced length
Lu
 = 
 = 5.000
[in]

Plate slenderness
KL/r
 = 1.20 x Lu  / r
 = 55.43



when  
KL/r
  >  25 , use Chapter E
AISC 15th  J4.4 (b)
Elastic buckling stress
Fe
 = 
π2 E/( KL/r )2
 = 93.17
[ksi]
AISC 15th  Eq E3-4
when  
KL/r
  ≤ 4.71 (
E/Fy
) 0.5 = 113.43
AISC 15th  E3 (a)
Critical stress
Fcr
 = 0.658 ( Fy / Fe )   Fy
 = 39.94
[ksi]
AISC 15th  Eq E3-2


Plate compression required
Pu
 = 0.5 x beam axial compression P
 = 156.1
[kips]

Plate compression provided
Rn
 = Fcr x Ag
 = 284.6
[kips]
AISC 15th  Eq E3-1
Resistance factor-LRFD
φ
 = 0.90
AISC 15th  E1
φ Rn
 = 
 = 256.1
[kips]

ratio
 = 0.61
 > Pu
OK
 
Splice Plate - Shear Yielding
ratio = 19.9 / 427.5
0.05
PASS
Splice Plate Shear Yielding



Plate size
width bp
 = 19.000
[in]
thickness tp
 = 0.375
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Agv
 = bp tp x 2 side
 = 14.250
[in2]

Shear force required
Vu
 = 
 = 19.9
[kips]

Plate shear yielding strength
Rn
 = 0.6 Fy Agv
 = 427.5
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 427.5
[kips]

ratio
 = 0.05
 > Vu
OK
 
Splice Plate - Flexural Yielding
ratio = 54.73 / 253.83
0.22
PASS
Plate width & thick
width bp
 = 19.000
[in]
thick tp
 = 0.375
[in]

yield Fy
 = 50.0
[ksi]

Beam end shear reaction caused by gravity load only
V
 = from user input
 = 19.9
[kips]

 
Ecc from column face to outer bolt group first bolt line
e
 = 
 = 33.000
[in]

Flexural strength required
Mr
 = V x e
 = 54.73
[kip-ft]

 
Shear plate - plastic modulus
Zp
 = ( bp x t2p ) / 4 x 2 side
 = 67.69
[in3]

Flexural strength available
Mc
 = φ Fy Zp     φ=0.90
 = 253.83
[kip-ft]

ratio
 = 0.22
 > Mr
OK
 
Splice Plate - Shear Rupture
ratio = 10.0 / 142.6
0.07
PASS
Plate Shear Rupture Check



Bolt hole diameter
bolt dia db
 = 78
[in]
bolt hole dia dh
 = 1
[in]
AISC 15th  B4.3b
Number of bolt
n
 = 6

Plate size
width bp
 = 19.000
[in]
thickness tp
 = 0.375
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in shear
Anv
 = ( bp - n dh ) tp
 = 4.875
[in2]

Shear force required
Vu
 = 
 = 10.0
[kips]

Plate shear rupture strength
Rn
 = 0.6 Fu Anv
 = 190.1
[kips]
AISC 15th  Eq J4-4
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-4
φ Rn
 = 
 = 142.6
[kips]

ratio
 = 0.07
 > Vu
OK
 
Splice Plate - Flexural Rupture
ratio = 27.36 / 96.36
0.28
PASS


Plate An and Znet Calc

Bolt hole diameter
bolt dia db
 = 78
[in]
bolt hole dia dh
 = 1
[in]
AISC 15th  B4.3b
Number of bolt
n
 = 6

Plate size
width bp
 = 19.000
[in]
thickness tp
 = 0.375
[in]

Plate net area
An
 = ( bp - n dh ) tp
 = 4.875
[in2]

Plate net plastic sect modulus
Znet
 = 
 = 23.72
[in3]

Plate net elastic sect modulus
Snet
 = 
 = 16.33
[in3]



Plate width & thick
width bp
 = 19.000
[in]
thick tp
 = 0.375
[in]

Fu
 = 65.0
[ksi]

Beam end shear reaction caused by gravity load only
V
 = from user input, x 0.5 for 2 side plate
 = 10.0
[kips]

 
Ecc from column face to outer bolt group first bolt line
e
 = 
 = 33.000
[in]

Flexural strength required
Mr
 = V x e
 = 27.36
[kip-ft]

 
Shear plate - net plastic modulus
Znet
 = from above calc
 = 23.72
[in3]

Flexural strength available
Mc
 = φ Fu Znet     φ=0.75
 = 96.36
[kip-ft]

ratio
 = 0.28
 > Mr
OK
 
 
 
Seismic SCBF LC4
shear V = 19.9 kips     axial P = 312.7 kips (C)
ratio = 0.61
PASS

Beam Web - Outer Side Bolt Group Eccentricity - Shear Only
 
Shear V - from user input, beam end shear reaction caused by gravity load only
ex         - hor distance from column face to the beam splice outer side bolt group CG point
 
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 0.0
[kips]

Resultant force to ver Y axis angle
θ
 = tan-1 (P / V)
 = 0.00
[°]



Bolt group row and column
bolt row nr
 = 6
bolt col nc
 = 2

Bolt row/column spacing
bolt row sr
 = 3.000
[in]
bolt col sc
 = 3.000
[in]

 
Shear force to bolt group CG ecc
ex
 = 
 = 34.500
[in]

 
Shear force to ver Y axis angle
θ
 = 
 = 0.00
[°]

 
Bolt group coefficient C
C
 = from AISC 15th  Table 7-6 ~ 7-13
 = 1.552

Bolt group eccentricity coefficient
Cec
 = C / ( nr x nc )
 = 0.129

 
Beam Web - Outer Side Bolt Group - Bolt Shear
ratio = 19.9 / 94.9
0.21
PASS
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 0.0
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 19.9
[kips]



Bolt shear stress
bolt grade
 = A325-X
Fnv
 = 68.0
[ksi]
AISC 15th  Table J3.2
bolt dia db
 = 0.875
[in]
bolt area Ab
 = 0.601
[in2]

Number of bolt carried shear
ns
 = 12.0
shear plane m
 = 2

Bolt group eccentricity coefficient
Cec
 = from 'Bolt Group Eccentricity' calc
 = 0.129

Required shear strength
Vu
 = 
 = 19.9
[kips]

Bolt shear strength
Rn
 = Fnv Ab ns m Cec
 = 126.6
[kips]
AISC 15th  Eq J3-1
Bolt resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J3-1
φ Rn
 = 
 = 94.9
[kips]

ratio
 = 0.21
 > Vu
OK
 
Beam Web - Outer Side Bolt Group - Bolt Bearing
ratio = 19.9 / 94.9
0.21
PASS
The bolt group is oriented so that the shear force V is in ver. direction and the axial force P is in hor. direction
 
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 0.0
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 19.9
[kips]

Single Bolt Shear Strength


Bolt shear stress
bolt grade
 = A325-X
Fnv
 = 68.0
[ksi]
AISC 15th  Table J3.2
bolt dia db
 = 0.875
[in]
bolt area Ab
 = 0.601
[in2]

Single bolt shear strength
Rn-bolt
 = 2 x Fnv Ab
 = 81.8
[kips]
AISC 15th  Eq J3-1
Bolt Bearing/TearOut Strength on Plate



Bolt hole diameter
bolt dia db
 = 78
[in]
bolt hole dia dh
 = 1516
[in]
AISC 15th  Table J3.3
Bolt spacing
spacing Ls
 = 3.000
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate thickness
t
 = 0.650
[in]

Interior Bolt



Bolt hole edge clear distance
Lc
 = Ls - dh
 = 2.063
[in]

Bolt tear out/bearing strength
Rn-t&b-in
 = 1.2 Lc t Fu ≤ 2.4 db t m Fu
AISC 15th  Eq J3-6a
 = 104.6 ≤ 88.7
 = 88.7
[kips]

Bolt strength at interior
Rn-in
 = min ( Rn-t&b-in , Rn-bolt )
 = 81.8
[kips]



Number of bolt
interior nin
 = 12

 
Bolt group eccentricity coefficient
Cec
 = from calc in above section
 = 0.129

 
Bolt bearing strength for all bolts
Rn
 = (nin Rn-in ) Cec
 = 126.6
[kips]

Required shear strength
Vu
 = 
 = 19.9
[kips]

Bolt resistance factor-LRFD
φ
 = 0.75
AISC 15th  J3-10
φ Rn
 = 
 = 94.9
[kips]

ratio
 = 0.21
 > Vu
OK
 
 
Beam Web - Inner Side Bolt Group Eccentricity - Shear Only
 
Shear V - from user input, beam end shear reaction caused by gravity load only
ex         - hor distance from column face to the beam splice inner side bolt group CG point
 
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 0.0
[kips]

Resultant force to ver Y axis angle
θ
 = tan-1 (P / V)
 = 0.00
[°]



Bolt group row and column
bolt row nr
 = 6
bolt col nc
 = 2

Bolt row/column spacing
bolt row sr
 = 3.000
[in]
bolt col sc
 = 3.000
[in]

 
Shear force to bolt group CG ecc
ex
 = 
 = 26.500
[in]

 
Shear force to ver Y axis angle
θ
 = 
 = 0.00
[°]

 
Bolt group coefficient C
C
 = from AISC 15th  Table 7-6 ~ 7-13
 = 2.007

Bolt group eccentricity coefficient
Cec
 = C / ( nr x nc )
 = 0.167

 
Beam Web - Inner Side Bolt Group - Bolt Shear
ratio = 19.9 / 122.9
0.16
PASS
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 0.0
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 19.9
[kips]



Bolt shear stress
bolt grade
 = A325-X
Fnv
 = 68.0
[ksi]
AISC 15th  Table J3.2
bolt dia db
 = 0.875
[in]
bolt area Ab
 = 0.601
[in2]

Number of bolt carried shear
ns
 = 12.0
shear plane m
 = 2

Bolt group eccentricity coefficient
Cec
 = from 'Bolt Group Eccentricity' calc
 = 0.167

Required shear strength
Vu
 = 
 = 19.9
[kips]

Bolt shear strength
Rn
 = Fnv Ab ns m Cec
 = 163.9
[kips]
AISC 15th  Eq J3-1
Bolt resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J3-1
φ Rn
 = 
 = 122.9
[kips]

ratio
 = 0.16
 > Vu
OK
 
Beam Web - Inner Side Bolt Group - Bolt Bearing
ratio = 19.9 / 122.9
0.16
PASS
The bolt group is oriented so that the shear force V is in ver. direction and the axial force P is in hor. direction
 
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 0.0
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 19.9
[kips]

Single Bolt Shear Strength


Bolt shear stress
bolt grade
 = A325-X
Fnv
 = 68.0
[ksi]
AISC 15th  Table J3.2
bolt dia db
 = 0.875
[in]
bolt area Ab
 = 0.601
[in2]

Single bolt shear strength
Rn-bolt
 = 2 x Fnv Ab
 = 81.8
[kips]
AISC 15th  Eq J3-1
Bolt Bearing/TearOut Strength on Plate



Bolt hole diameter
bolt dia db
 = 78
[in]
bolt hole dia dh
 = 1516
[in]
AISC 15th  Table J3.3
Bolt spacing
spacing Ls
 = 3.000
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate thickness
t
 = 0.650
[in]

Interior Bolt



Bolt hole edge clear distance
Lc
 = Ls - dh
 = 2.063
[in]

Bolt tear out/bearing strength
Rn-t&b-in
 = 1.2 Lc t Fu ≤ 2.4 db t m Fu
AISC 15th  Eq J3-6a
 = 104.6 ≤ 88.7
 = 88.7
[kips]

Bolt strength at interior
Rn-in
 = min ( Rn-t&b-in , Rn-bolt )
 = 81.8
[kips]



Number of bolt
interior nin
 = 12

 
Bolt group eccentricity coefficient
Cec
 = from calc in above section
 = 0.167

 
Bolt bearing strength for all bolts
Rn
 = (nin Rn-in ) Cec
 = 163.9
[kips]

Required shear strength
Vu
 = 
 = 19.9
[kips]

Bolt resistance factor-LRFD
φ
 = 0.75
AISC 15th  J3-10
φ Rn
 = 
 = 122.9
[kips]

ratio
 = 0.16
 > Vu
OK
 
 
Beam Web - Inner Side Bolt Group Eccentricity - Shear + Axial
 
Shear V - from user input, beam end shear reaction caused by gravity load only
Axial  P -  from gusset interface forces calc , beam member axial load Pbm
ex         - hor distance from the gusset-beam weld line CG point to the beam splice inner side bolt group CG point
 
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 312.7
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 313.3
[kips]

Resultant force to ver Y axis angle
θ
 = tan-1 (P / V)
 = 86.36
[°]



Bolt group row and column
bolt row nr
 = 6
bolt col nc
 = 2

Bolt row/column spacing
bolt row sr
 = 3.000
[in]
bolt col sc
 = 3.000
[in]

 
Shear force to bolt group CG ecc
ex
 = 
 = 12.125
[in]

 
Shear force to ver Y axis angle
θ
 = 
 = 86.36
[°]

 
Bolt group coefficient C
C
 = from AISC 15th  Table 7-6 ~ 7-13
 = 10.597

Bolt group eccentricity coefficient
Cec
 = C / ( nr x nc )
 = 0.883

 
Beam Web - Inner Side Bolt Group - Bolt Shear
ratio = 313.3 / 649.9
0.48
PASS
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 312.7
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 313.3
[kips]



Bolt shear stress
bolt grade
 = A325-X
Fnv
 = 68.0
[ksi]
AISC 15th  Table J3.2
bolt dia db
 = 0.875
[in]
bolt area Ab
 = 0.601
[in2]

Number of bolt carried shear
ns
 = 12.0
shear plane m
 = 2

Bolt group eccentricity coefficient
Cec
 = from 'Bolt Group Eccentricity' calc
 = 0.883

Required shear strength
Vu
 = 
 = 313.3
[kips]

Bolt shear strength
Rn
 = Fnv Ab ns m Cec
 = 866.5
[kips]
AISC 15th  Eq J3-1
Bolt resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J3-1
φ Rn
 = 
 = 649.9
[kips]

ratio
 = 0.48
 > Vu
OK
 
Beam Web - Inner Side Bolt Group - Bolt Bearing
ratio = 313.3 / 633.4
0.49
PASS
The bolt group is oriented so that the shear force V is in ver. direction and the axial force P is in hor. direction
 
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 312.7
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 313.3
[kips]

Single Bolt Shear Strength


Bolt shear stress
bolt grade
 = A325-X
Fnv
 = 68.0
[ksi]
AISC 15th  Table J3.2
bolt dia db
 = 0.875
[in]
bolt area Ab
 = 0.601
[in2]

Single bolt shear strength
Rn-bolt
 = 2 x Fnv Ab
 = 81.8
[kips]
AISC 15th  Eq J3-1
Bolt Bearing/TearOut Strength on Plate



Bolt hole diameter
bolt dia db
 = 78
[in]
bolt hole dia dh
 = 1516
[in]
AISC 15th  Table J3.3
Bolt spacing & edge distance
spacing Ls
 = 3.000
[in]
edge distance Le
 = 2.000
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate thickness
t
 = 0.650
[in]

Interior Bolt



Bolt hole edge clear distance
Lc
 = Ls - dh
 = 2.063
[in]

Bolt tear out/bearing strength
Rn-t&b-in
 = 1.2 Lc t Fu ≤ 2.4 db t Fu
AISC 15th  Eq J3-6a
 = 104.6 ≤ 88.7
 = 88.7
[kips]

Bolt strength at interior
Rn-in
 = min ( Rn-t&b-in , Rn-bolt )
 = 81.8
[kips]

Edge Bolt



Bolt hole edge clear distance
Lc
 = Le - dh / 2
 = 1.531
[in]

Bolt tear out/bearing strength
Rn-t&b-ed
 = 1.2 Lc t Fu ≤ 2.4 db t Fu
AISC 15th  Eq J3-6a
 = 77.6 ≤ 88.7
 = 77.6
[kips]

Bolt strength at edge
Rn-ed
 = min ( Rn-t&b-ed , Rn-bolt )
 = 77.6
[kips]



Number of bolt
interior nin
 = 6
edge ned
 = 6

 
Bolt group eccentricity coefficient
Cec
 = from calc in above section
 = 0.883

 
Bolt bearing strength for all bolts
Rn
 = (nin Rn-in + ned Rn-ed ) Cec
 = 844.6
[kips]

Required shear strength
Vu
 = 
 = 313.3
[kips]

Bolt resistance factor-LRFD
φ
 = 0.75
AISC 15th  J3-10
φ Rn
 = 
 = 633.4
[kips]

ratio
 = 0.49
 > Vu
OK
 
 
Beam Web - Outer Side Bolt Group Eccentricity - Shear + Axial
 
Shear V - from user input, beam end shear reaction caused by gravity load only
Axial  P -  from gusset interface forces calc , beam member axial load Pbm
ex         - hor distance from the gusset-beam weld line CG point to the beam splice outer side bolt group CG point
 
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 312.7
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 313.3
[kips]

Resultant force to ver Y axis angle
θ
 = tan-1 (P / V)
 = 86.36
[°]



Bolt group row and column
bolt row nr
 = 6
bolt col nc
 = 2

Bolt row/column spacing
bolt row sr
 = 3.000
[in]
bolt col sc
 = 3.000
[in]

 
Shear force to bolt group CG ecc
ex
 = 
 = 20.125
[in]

 
Shear force to ver Y axis angle
θ
 = 
 = 86.36
[°]

 
Bolt group coefficient C
C
 = from AISC 15th  Table 7-6 ~ 7-13
 = 9.946

Bolt group eccentricity coefficient
Cec
 = C / ( nr x nc )
 = 0.829

 
Beam Web - Outer Side Bolt Group - Bolt Shear
ratio = 313.3 / 610.2
0.51
PASS
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 312.7
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 313.3
[kips]



Bolt shear stress
bolt grade
 = A325-X
Fnv
 = 68.0
[ksi]
AISC 15th  Table J3.2
bolt dia db
 = 0.875
[in]
bolt area Ab
 = 0.601
[in2]

Number of bolt carried shear
ns
 = 12.0
shear plane m
 = 2

Bolt group eccentricity coefficient
Cec
 = from 'Bolt Group Eccentricity' calc
 = 0.829

Required shear strength
Vu
 = 
 = 313.3
[kips]

Bolt shear strength
Rn
 = Fnv Ab ns m Cec
 = 813.5
[kips]
AISC 15th  Eq J3-1
Bolt resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J3-1
φ Rn
 = 
 = 610.2
[kips]

ratio
 = 0.51
 > Vu
OK
 
Beam Web - Outer Side Bolt Group - Bolt Bearing
ratio = 313.3 / 594.7
0.53
PASS
The bolt group is oriented so that the shear force V is in ver. direction and the axial force P is in hor. direction
 
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 312.7
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 313.3
[kips]

Single Bolt Shear Strength


Bolt shear stress
bolt grade
 = A325-X
Fnv
 = 68.0
[ksi]
AISC 15th  Table J3.2
bolt dia db
 = 0.875
[in]
bolt area Ab
 = 0.601
[in2]

Single bolt shear strength
Rn-bolt
 = 2 x Fnv Ab
 = 81.8
[kips]
AISC 15th  Eq J3-1
Bolt Bearing/TearOut Strength on Plate



Bolt hole diameter
bolt dia db
 = 78
[in]
bolt hole dia dh
 = 1516
[in]
AISC 15th  Table J3.3
Bolt spacing & edge distance
spacing Ls
 = 3.000
[in]
edge distance Le
 = 2.000
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate thickness
t
 = 0.650
[in]

Interior Bolt



Bolt hole edge clear distance
Lc
 = Ls - dh
 = 2.063
[in]

Bolt tear out/bearing strength
Rn-t&b-in
 = 1.2 Lc t Fu ≤ 2.4 db t Fu
AISC 15th  Eq J3-6a
 = 104.6 ≤ 88.7
 = 88.7
[kips]

Bolt strength at interior
Rn-in
 = min ( Rn-t&b-in , Rn-bolt )
 = 81.8
[kips]

Edge Bolt



Bolt hole edge clear distance
Lc
 = Le - dh / 2
 = 1.531
[in]

Bolt tear out/bearing strength
Rn-t&b-ed
 = 1.2 Lc t Fu ≤ 2.4 db t Fu
AISC 15th  Eq J3-6a
 = 77.6 ≤ 88.7
 = 77.6
[kips]

Bolt strength at edge
Rn-ed
 = min ( Rn-t&b-ed , Rn-bolt )
 = 77.6
[kips]



Number of bolt
interior nin
 = 6
edge ned
 = 6

 
Bolt group eccentricity coefficient
Cec
 = from calc in above section
 = 0.829

 
Bolt bearing strength for all bolts
Rn
 = (nin Rn-in + ned Rn-ed ) Cec
 = 792.9
[kips]

Required shear strength
Vu
 = 
 = 313.3
[kips]

Bolt resistance factor-LRFD
φ
 = 0.75
AISC 15th  J3-10
φ Rn
 = 
 = 594.7
[kips]

ratio
 = 0.53
 > Vu
OK
 
 
Splice Plate - Outer Side Bolt Group Eccentricity - Shear Only
 
Shear V - from user input, beam end shear reaction caused by gravity load only
ex         - hor distance from column face to the beam splice outer side bolt group CG point
 
Bolt group forces
shear V
 = 19.9
[kips]
axial P
 = 0.0
[kips]

Resultant force to ver Y axis angle
θ
 = tan-1 (P / V)
 = 0.00
[°]



Bolt group row and column
bolt row nr
 = 6
bolt col nc
 = 2

Bolt row/column spacing
bolt row sr
 = 3.000
[in]
bolt col sc
 = 3.000
[in]

 
Shear force to bolt group CG ecc
ex
 = 
 = 34.500
[in]

 
Shear force to ver Y axis angle
θ
 = 
 = 0.00
[°]

 
Bolt group coefficient C
C
 = from AISC 15th  Table 7-6 ~ 7-13
 = 1.552

Bolt group eccentricity coefficient
Cec
 = C / ( nr x nc )
 = 0.129

 
Splice Plate - Outer Side Bolt Group - Bolt Bearing
ratio = 10.0 / 47.5
0.21
PASS
The bolt group is oriented so that the shear force V is in ver. direction and the axial force P is in hor. direction
 
Bolt group forces
shear V
 = 10.0
[kips]
axial P
 = 0.0
[kips]

Bolt group resultant force
R
 = ( V2 + P2 )0.5
 = 10.0
[kips]

Single Bolt Shear Strength


Bolt shear stress
bolt grade
 = A325-X
Fnv
 = 68.0
[ksi]
AISC 15th  Table J3.2
bolt dia db
 = 0.875
[in]
bolt area Ab
 = 0.601
[in2]

Single bolt shear strength
Rn-bolt
 = Fnv Ab
 = 40.9
[kips]
AISC 15th  Eq J3-1
Bolt Bearing/TearOut Strength on Plate



Bolt hole diameter
bolt dia db
 = 78
[in]
bolt hole dia dh
 = 1516
[in]
AISC 15th  Table J3.3
Bolt spacing
spacing Ls
 = 3.000
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate thickness
t
 = 0.375
[in]

Interior Bolt



Bolt hole edge clear distance
Lc
 = Ls - dh
 = 2.063
[in]

Bolt tear out/bearing strength
Rn-t&b-in
 = 1.2 Lc t Fu ≤ 2.4 db t m Fu
AISC 15th  Eq J3-6a
 = 60.3 ≤ 51.2
 = 51.2
[kips]

Bolt strength at interior
Rn-in
 = min ( Rn-t&b-in , Rn-bolt )
 = 40.9
[kips]



Number of bolt
interior nin
 = 12

 
Bolt group eccentricity coefficient
Cec
 = from calc in above section
 = 0.129

 
Bolt bearing strength for all bolts
Rn
 = (nin Rn-in ) Cec
 = 63.3
[kips]

Required shear strength
Vu
 = 
 = 10.0
[kips]

Bolt resistance factor-LRFD
φ
 = 0.75
AISC 15th  J3-10
φ Rn
 = 
 = 47.5
[kips]

ratio
 = 0.21
 > Vu
OK
 
 
Splice Plate - Compression Buckling
ratio = 156.4 / 256.1
0.61
PASS
Plate Compression Check



Plate size
width bp
 = 19.000
[in]
thickness tp
 = 0.375
[in]

Fy
 = 50.0
[ksi]
E
 = 29000
[ksi]

Plate gross area in compression
Ag
 = bp tp
 = 7.125
[in2]



Plate radius of gyration
r
 = tp / 12
 = 0.108
[in]

Plate effective length factor
K
 = 
 = 1.20
AISC 15th  Table C-A-7.1
Plate unbraced length
Lu
 = 
 = 5.000
[in]

Plate slenderness
KL/r
 = 1.20 x Lu  / r
 = 55.43



when  
KL/r
  >  25 , use Chapter E
AISC 15th  J4.4 (b)
Elastic buckling stress
Fe
 = 
π2 E/( KL/r )2
 = 93.17
[ksi]
AISC 15th  Eq E3-4
when  
KL/r
  ≤ 4.71 (
E/Fy
) 0.5 = 113.43
AISC 15th  E3 (a)
Critical stress
Fcr
 = 0.658 ( Fy / Fe )   Fy
 = 39.94
[ksi]
AISC 15th  Eq E3-2


Plate compression required
Pu
 = 0.5 x beam axial compression P
 = 156.4
[kips]

Plate compression provided
Rn
 = Fcr x Ag
 = 284.6
[kips]
AISC 15th  Eq E3-1
Resistance factor-LRFD
φ
 = 0.90
AISC 15th  E1
φ Rn
 = 
 = 256.1
[kips]

ratio
 = 0.61
 > Pu
OK
 
Splice Plate - Shear Yielding
ratio = 19.9 / 427.5
0.05
PASS
Splice Plate Shear Yielding



Plate size
width bp
 = 19.000
[in]
thickness tp
 = 0.375
[in]

Plate yield strength
Fy
 = 50.0
[ksi]

Plate gross area in shear
Agv
 = bp tp x 2 side
 = 14.250
[in2]

Shear force required
Vu
 = 
 = 19.9
[kips]

Plate shear yielding strength
Rn
 = 0.6 Fy Agv
 = 427.5
[kips]
AISC 15th  Eq J4-3
Resistance factor-LRFD
φ
 = 1.00
AISC 15th  Eq J4-3
φ Rn
 = 
 = 427.5
[kips]

ratio
 = 0.05
 > Vu
OK
 
Splice Plate - Flexural Yielding
ratio = 54.73 / 253.83
0.22
PASS
Plate width & thick
width bp
 = 19.000
[in]
thick tp
 = 0.375
[in]

yield Fy
 = 50.0
[ksi]

Beam end shear reaction caused by gravity load only
V
 = from user input
 = 19.9
[kips]

 
Ecc from column face to outer bolt group first bolt line
e
 = 
 = 33.000
[in]

Flexural strength required
Mr
 = V x e
 = 54.73
[kip-ft]

 
Shear plate - plastic modulus
Zp
 = ( bp x t2p ) / 4 x 2 side
 = 67.69
[in3]

Flexural strength available
Mc
 = φ Fy Zp     φ=0.90
 = 253.83
[kip-ft]

ratio
 = 0.22
 > Mr
OK
 
Splice Plate - Shear Rupture
ratio = 10.0 / 142.6
0.07
PASS
Plate Shear Rupture Check



Bolt hole diameter
bolt dia db
 = 78
[in]
bolt hole dia dh
 = 1
[in]
AISC 15th  B4.3b
Number of bolt
n
 = 6

Plate size
width bp
 = 19.000
[in]
thickness tp
 = 0.375
[in]

Plate tensile strength
Fu
 = 65.0
[ksi]

Plate net area in shear
Anv
 = ( bp - n dh ) tp
 = 4.875
[in2]

Shear force required
Vu
 = 
 = 10.0
[kips]

Plate shear rupture strength
Rn
 = 0.6 Fu Anv
 = 190.1
[kips]
AISC 15th  Eq J4-4
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq J4-4
φ Rn
 = 
 = 142.6
[kips]

ratio
 = 0.07
 > Vu
OK
 
Splice Plate - Flexural Rupture
ratio = 27.36 / 96.36
0.28
PASS


Plate An and Znet Calc

Bolt hole diameter
bolt dia db
 = 78
[in]
bolt hole dia dh
 = 1
[in]
AISC 15th  B4.3b
Number of bolt
n
 = 6

Plate size
width bp
 = 19.000
[in]
thickness tp
 = 0.375
[in]

Plate net area
An
 = ( bp - n dh ) tp
 = 4.875
[in2]

Plate net plastic sect modulus
Znet
 = 
 = 23.72
[in3]

Plate net elastic sect modulus
Snet
 = 
 = 16.33
[in3]



Plate width & thick
width bp
 = 19.000
[in]
thick tp
 = 0.375
[in]

Fu
 = 65.0
[ksi]

Beam end shear reaction caused by gravity load only
V
 = from user input, x 0.5 for 2 side plate
 = 10.0
[kips]

 
Ecc from column face to outer bolt group first bolt line
e
 = 
 = 33.000
[in]

Flexural strength required
Mr
 = V x e
 = 27.36
[kip-ft]

 
Shear plate - net plastic modulus
Znet
 = from above calc
 = 23.72
[in3]

Flexural strength available
Mc
 = φ Fu Znet     φ=0.75
 = 96.36
[kip-ft]

ratio
 = 0.28
 > Mr
OK