Result Summary - Overall
Anchorage Design
Code=ACI 318-19

Result Summary - Overall
geometries & weld limitations = PASS
limit states max ratio 
0.98
PASS
 
Anchor Bolt - LC 1     P + Vy + Mx
geometries & weld limitations = PASS
limit states max ratio 
0.80
PASS


 
Base Plate - LC 1     P + Mx
geometries & weld limitations = PASS
limit states max ratio 
0.98
PASS
 
 
 

  Sketch
Anchorage Design
Code=ACI 318-19

 
 
 
Anchor Forces Calculation
 


Anchor Tensile Force Calculation


 
User Input
 
 
 
Anchor edge distance
c1u
 = 6.000
[in]
c2u
 = 6.000
[in]
c3u
 = 6.000
[in]
c4u
 = 6.000
[in]
 
Anchor out-out spacing
s1u
 = 16.000
[in]
s2u
 = 16.000
[in]
 
Anchor embedment depth
hef
 = 18.000
[in]
 
Design Load - Load Case 1
 
Axial force
Axial P
 = -116.00
[kips]
  in tension
 
Shear forces
Vy
 = 30.00
[kips]
Vx
 = 0.00
[kips]
 
Moment forces
Mx
 = 0.00
[kip-ft]
My
 = 0.00
[kip-ft]
Anchor Layout Plan
 
 
 

  Anchor Bolt - Load Case 1     P + Vy + Mx
    Pt =116.0 kip     Vy =30.0 kip     Mx =0.0 kip-ft
Code=ACI 318-19

Result Summary
geometries & weld limitations = PASS
limit states max ratio 
0.80
PASS
 
 
Minimum Anchor Dimensions Check
PASS
 
Min Anchor Dimensions Check
 
When anchor reinforcement or supplementary reinforcement is provided, the check on min edge distance
is not required. Only min anchor spacing is checked as per ACI 318-19 Table 17.9.2(a)
ACI 318-19 17.9.1
 


 
ACI 318-19 17.9.1
 
 


 
Anchor Rod Inputs


Anchor rod grade and dia
grade
 = F1554 Gr55
da
 = 114
[in]

 
Min Anchor Spacing


 
Min anchor spacing required
smin
 = 6 x da
 = 7.500
[in]
ACI 318-19 Table 17.9.2(a)
 
Anchor bolt pattern
 = from user input
 = 4B

 
Min anchor spacing
s
 = from user input
 = 16.000
[in]

 ≥ smin
OK
 


 
ACI 318-19 Table 17.9.2(a)
 
 
 
 
Anchor Rod Tensile Resistance
ratio = 29.0 / 54.5
0.53
PASS
 
Anchor rod effective section area
Ase
 = 0.97
[in2]
futa
 = 75.0
[ksi]

Anchor rod steel strength in tension
Nsa
 = Ase futa
 = 72.68
[kips]
ACI 318-19 17.6.1.2
 


 
Max Single Anchor Tensile Force
 
Anchor group axial tensile force
P
 = from user load input
 = -116.00
[kips]
in tension
No of anchors in the group
nt
 = 
 = 4

 
Single anchor tensile force
T
 = P / nt
 = 29.00
[kips]



 
Strength reduction factor
φts
 = 0.75
ACI 318-19 17.5.3(a)
φts Nsa
 = 0.75 x 72.68
 = 54.51
[kips]

ratio
 = 0.53
 > T
OK
 
Anchor Reinforcement Tensile Breakout Resistance
ratio = 116.0 / 273.3
0.42
PASS
 
Concrete & rebar strength
fc
 = 4.5
[ksi]
fy
 = 60.0
[ksi]

Ver rebar no & area
bar no
 = #8
As
 = 0.79
[in2]

db
 = 1"

 
Ψe
 = 1.0
Ψr
 = 1.0
ACI 318-19 Table 25.4.3.2
Ψo
 = 1.0
Ψc
 = 0.90

 
Hook rebar development length
ldh
 = max(
fy Ψe Ψr Ψo Ψc/55 λ fc
d1.5b , 8db , 6" )
 = 14.636
[in]
ACI 318-19 25.4.3.1
 


 
When anchor reinforcement is used, rebar development length on both sides of concrete failure breakout line shall meet the min. development length requirement
 
Anchor embedment depth
hef
 = from user input
 = 18.000
[in]
Avg ver. bar center to anchor rod center distance
dar
 = from user input
 = 2.740
[in]
 
 
ACI 318-19 25.4.3.1
Min rebar development length required
lmin
 = max( 8db , 6" )
 = 8.000
[in]
 





 
Actual rebar development length
la
 = hef - top cover (2") - dar tan35
 = 14.081
[in]

ratio
 = 0.57
 > lmin
OK
ACI 318-19 25.4.3.1
 


 
Anchor group tensile load
Nu
 = from user load input
 = 116.00
[kips]

 
No of ver rebar effective to resist anchor tension
nv
 = from user input
 = 8.0

Rebar resistance factor
φs
 = 0.75
ACI 318-19 17.5.3
 
when la < ldh , anchor reinforcement rebar won't develope full yield strength fy and Nr need to
apply a reduction factor la / ldh
 
Anchor reinft breakout resistance
φ Nn
 = φs nv As fy
la/ldh
 = 273.26
[kips]
ACI 318-19 17.5.2.1 (a)
 
ratio
 = 0.42
 > Nu
OK
 
Anchor Pullout Resistance
ratio = 29.0 / 56.4
0.51
PASS
 
Anchor head net bearing area & conc strength
Abrg
 = 2.24
[in2]
fc
 = 4.5
[ksi]

Single bolt pullout resistance
Np
 = 8 Abrg fc
 = 80.53
[kips]
ACI 318-19 17.6.3.2.2a
Pullout cracking factor
ΨcP
 = for cracked concrete
 = 1.00
ACI 318-19 17.6.3.3.1(b)
 


 
Max Single Anchor Tensile Force
 
Anchor group axial tensile force
P
 = from user load input
 = -116.00
[kips]
in tension
No of anchors in the group
nt
 = 
 = 4

 
Single anchor tensile force
T
 = P / nt
 = 29.00
[kips]



 
Strength reduction factor
φtc
 = 0.70
 pullout strength is always Condition B
ACI 318-19 17.5.3(c)
φtc Npn
 = φtc ΨcP Np
 = 56.37
[kips]

 
Seismic design strength reduction
 = x 1.0   not applicable
 = 56.37
[kips]
ACI 318-19 17.10.5.4(c)
 
ratio
 = 0.51
 > T
OK
 
Anchor Side Blowout Resistance
ratio = 29.0 / 36.1
0.80
PASS
Anchor Inputs


Anchor edge distance
c1
 = 6.000
[in]
c2
 = 6.000
[in]

c3
 = 6.000
[in]
c4
 = 6.000
[in]

 
Anchor out-out spacing
s1
 = 16.000
[in]
s2
 = 16.000
[in]




 
Side Edges Along X-X Axis - Width Edges
 
Anchor edge distance in Y direction
ca1
 = min (c1 , c3 )
 = 6.000
[in]

Anchor embedment depth
hef
 = from user input
 = 18.000
[in]

 
Side blowout check is required on this edge or not
 = check if hef > 2.5 ca1
 = True
ACI 318-19 17.6.4.1
 
Side blowout check is required
ACI 318-19 17.6.4.1
 
Anchor out-out distance edges along X direction
s2
 = from user input
 = 16.000
[in]

Anchor number along X direction
nw
 = from user input
 = 2

 
Anchor head net bearing area & conc strength
Abrg
 = 2.24
[in2]
fc
 = 4.5
[ksi]

Lightweight conc modification factor
λ
 = 1.0
ACI 318-19 17.2.4.1
 
Single anchor side blowout capacity
Nsb
 = 160 ca1 Abrg λ fc
 = 96.32
[kips]
ACI 318-19 17.6.4.1
 
For multiple anchors along the edge, check if the anchor spacing is close enough so that side
blowout capacity shall be calculated as a group
ACI 318-19 17.6.4.2
 
 
Anchor spacing along X-X edges
sb
 = s2 / (nw - 1)
 = 16.000
[in]

 
Multiple tensile anchors space close and work as group or not
 = check if sb < 6 ca1
 = True
ACI 318-19 17.6.4.2
 
Multiple anchors group factor
 = 1 +
s2/6ca1
 = 1.44
ACI 318-19 17.6.4.2
 
Group anchor side blowout capacity
Nsbg
 = (1 +
s2/6ca1
) Nsb
 = 139.13
[kips]

 


 
Max Single Anchor Tensile Force
 
Anchor group axial tensile force
P
 = from user load input
 = -116.00
[kips]
in tension
No of anchors in the group
nt
 = 
 = 4

 
Single anchor tensile force
T
 = P / nt
 = 29.00
[kips]



No of anchors along side blowout edge
nbw
 = from user input
 = 2

 
Tensile force - anchors along potential blowout edge
Tw
 = nbw x T
 = 58.00
[kips]



 
Strength reduction factor
φtc
 = 0.75
  supplementary reinft present
ACI 318-19 17.5.3(b)
φtc Nsbg
 = 0.75 x 139.13
 = 104.35
[kips]

 
Seismic design strength reduction
 = x 1.0   not applicable
 = 104.35
[kips]
ACI 318-19 17.10.5.4(d)
 
ratio
 = 0.56
 > Tw
OK
 
When there are tensile anchors in the group which are not located on blowout edge, we need to use edge
anchors capacity above to work out anchor group tensile capacity
 
Group anchor no & no of anchor along blowout edge
nt
 = 4
nbw
 = 2

 
Group anchor tensile side blowout capacity
 = 104.35
nt/nbw
 = 208.69
[kips]

 
Side Edges Along Y-Y Axis - Depth Edges
 
Anchor edge distance in X direction
ca2
 = min (c2 , c4 )
 = 6.000
[in]

Anchor embedment depth
hef
 = from user input
 = 18.000
[in]

 
Side blowout check is required on this edge or not
 = check if hef > 2.5 ca2
 = True
ACI 318-19 17.6.4.1
 
Side blowout check is required
ACI 318-19 17.6.4.1
 
Anchor out-out distance edges along X direction
s1
 = from user input
 = 16.000
[in]

Anchor number along X direction
nd
 = from user input
 = 2

 
Anchor head net bearing area & conc strength
Abrg
 = 2.24
[in2]
fc
 = 4.5
[ksi]

Lightweight conc modification factor
λ
 = 1.0
ACI 318-19 17.2.4.1
 
Single anchor side blowout capacity
Nsb
 = 160 ca2 Abrg λ fc
 = 96.32
[kips]
ACI 318-19 17.6.4.1
 
For multiple anchors along the edge, check if the anchor spacing is close enough so that side
blowout capacity shall be calculated as a group
ACI 318-19 17.6.4.2
 
 
Anchor spacing along Y-Y edges
sb
 = s1 / (nd - 1)
 = 16.000
[in]

 
Multiple tensile anchors space close and work as group or not
 = check if sb < 6 ca2
 = True
ACI 318-19 17.6.4.2
 
Multiple anchors group factor
 = 1 +
s1/6ca2
 = 1.44
ACI 318-19 17.6.4.2
 
Group anchor side blowout capacity
Nsbg
 = (1 +
s1/6ca2
) Nsb
 = 139.13
[kips]

 


 
Max Single Anchor Tensile Force
 
Anchor group axial tensile force
P
 = from user load input
 = -116.00
[kips]
in tension
No of anchors in the group
nt
 = 
 = 4

 
Single anchor tensile force
T
 = P / nt
 = 29.00
[kips]



No of anchors along side blowout edge
nbd
 = from user input
 = 2

 
Tensile force - anchors along potential blowout edge
Td
 = nbd x T
 = 58.00
[kips]



 
Strength reduction factor
φtc
 = 0.75
  supplementary reinft present
ACI 318-19 17.5.3(b)
φtc Nsbg
 = 0.75 x 139.13
 = 104.35
[kips]

 
Seismic design strength reduction
 = x 1.0   not applicable
 = 104.35
[kips]
ACI 318-19 17.10.5.4(d)
 
ratio
 = 0.56
 > Td
OK
 
When there are tensile anchors in the group which are not located on blowout edge, we need to use edge
anchors capacity above to work out anchor group tensile capacity
 
Group anchor no & no of anchor along blowout edge
nt
 = 4
nbd
 = 2

 
Group anchor tensile side blowout capacity
 = 104.35
nt/nbd
 = 208.69
[kips]

 
Corner Single Anchor Side Blowout
 
 
Check on corner single anchor side blowout capacity considering the corner effect factor
as per ACI 318-19 17.6.4.1.1
ACI 318-19 17.6.4.1.1
 
Anchor edge distance
ca1
 = min (c1 , c3 )
 = 6.000
[in]

ca2
 = min (c2 , c4 )
 = 6.000
[in]

 
Consider corner effect or not
 = check if ca2 < 3 ca1
 = True
ACI 318-19 17.6.4.1.1
Single anchor side blowout capacity
Nsb1
 = (1 +
ca2/ca1
) /4 x Nsb
 = 48.16
[kips]

 


 
Max Single Anchor Tensile Force
 
Anchor group axial tensile force
P
 = from user load input
 = -116.00
[kips]
in tension
No of anchors in the group
nt
 = 
 = 4

 
Single anchor tensile force
T
 = P / nt
 = 29.00
[kips]



 
Strength reduction factor
φtc
 = 0.75
  supplementary reinft present
ACI 318-19 17.5.3(b)
φtc Nsb
 = 0.75 x 48.16
 = 36.12
[kips]

 
Seismic design strength reduction
 = x 1.0   not applicable
 = 36.12
[kips]
ACI 318-19 17.10.5.4(d)
 
ratio
 = 0.80
 > T1
OK
 
 
Anchor Group Governing Tensile Resistance
 
Anchor group governing tensile resistance is the minimum value of the resistance values in
the following limit states
 
No of anchors in anchor group
resisting tension
nt
 = from Anchor Forces Calculation above
 = 4

 
Anchor rod tensile resistance
nt φ Nsa
 = 4 x 54.51
 = 218.03
[kips]

 
Anchor concrete breakout resistance
φ Nn
 = from anchor reinft tensile breakout
 = 273.26
[kips]

resistance calc above

 
Anchor pullout resistance
nt φ Npm
 = 4 x 56.37
 = 225.49
[kips]

 
Anchor side blowout resistance
φ Nsbg
 = from anchor side blowout calc above
 = 208.69
[kips]

 
Anchor group governing tensile resistance
φ Nn
 = minimum of above values
 = 208.69
[kips]

 
 
Anchor Rod Shear Resistance
ratio = 30.0 / 90.7
0.33
PASS
 
Shear load on anchor group
Vu
 = from user load input
 = 30.00
[kips]

 
Anchor rod effective section area
Ase
 = 0.97
[in2]
futa
 = 75.0
[ksi]

No of anchors in the group resisting shear
ns
 = from user input
 = 4

 
Anchor rod steel strength in tension
Vsa
 = ns 0.6 Ase futa
 = 174.42
[kips]
ACI 318-19 17.7.1.2b
 
Strength reduction factor
φvs
 = 0.65
ACI 318-19 17.5.3(a)
φvs Vsa
 = 
 = 113.37
[kips]

 
Reduction due to built-up grout pad
 = x 0.80   applicable
 = 90.70
[kips]
ACI 318-19 17.7.1.2.1
 
ratio
 = 0.33
 > Vu
OK
 
Concrete Shear Breakout Resistance
ratio = 21.2 / 45.2
0.47
PASS
 
Strut-and-Tie model is used to analyze the shear transfer and to design
the required tie reinforcement
 
ACI 318-19 Table 21.2.1 (g)
STM strength reduction factor
φst
 = 0.75

 
Anchor edge distance
c1
 = 6.000
[in]
c2
 = 6.000
[in]

c3
 = 6.000
[in]
c4
 = 6.000
[in]

 
Anchor dia & embedment depth
da
 = 1.250
[in]
hef
 = 18.000
[in]

 
Shear load on anchor group
Vu
 = from user load input
 = 30.00
[kips]



 

 
Refer to sketch above for the terms and notations used below
 
Strut-and-Tie model geometry
dv
 = c1 - 2.75" ( 70mm )
 = 3.250
[in]

dh
 = min( c2 , c4 ) - 2.75" ( 70mm )
 = 3.250
[in]

θ
 = tan-1 ( dv / dh )
 = 45.0
[°]

dt
 = d2v + d2h
 = 4.596
[in]

 
Strut compression force
Cs
 = 
0.5 Vu/sin θ
 = 21.21
[kips]

 
Strut Bearing Strength
 
 
No of anchors in the group resisting shear
ns
 = from user input
 = 4

Concrete & rebar strength
fc
 = 4.5
[ksi]
fy
 = 60.0
[ksi]

Strut compressive strength
fce
 = 0.85 fc
 = 3.8
[ksi]
ACI 318-19 23.4.3
 
Bearing of Anchor Bolt
Anchor bearing length
le
 = min( 8da , hef )
 = 10.000
[in]
ACI 318-19 17.7.2.2.1
Anchor bearing area
Abrg
 = le x da
 = 12.50
[in2]

Anchor bearing resistance
Cr
 = ns x φst x fce x Abrg
 = 143.44
[kips]

 
ratio
 = 0.21
 > Vu
OK
 
Bearing of Ver Reinforcement Rebar
Anchor & ver rebar dia
da
 = 1.250
[in]
db
 = 1.000
[in]

Anchor bearing area
Abrg
 = [ le + 1.5dt - 0.5( da + db ) ] x db
 = 15.77
[in2]

Anchor bearing resistance
Cr
 = φst x fce x Abrg
 = 45.24
[kips]

 
ratio
 = 0.47
 > Cs
OK
 
Tie Reinforcement
 
 
* For tie reinforcement, only the top most 2 or 3 layers of ties (2" from TOC and 2x3" after) are effective
 
* Assume 100% of hor. tie bars can develop full yield strength as per user's choice in Anchor Reinforcement input
 
Total number of hor tie bar
n
 = nleg (leg) x nlay (layer)
 = 12

 
Rebar resistance factor
φs
 = 0.75
17.5.3 (a)
Hor rebar area & strength
As
 = 0.31
[in2]
fyh
 = 60.0
[ksi]

 
Single tie bar tension resistance
Tr
 = φs fyh As
 = 13.95
[kips]

 
Total tie bar tension resistance
φs Vnb
 = n x Tr
 = 167.40
[kips]
17.5.2.1 (b)
 
ratio
 = 0.18
 > Vu
OK
 
Concrete Pryout Shear Resistance
PASS
 
The pryout failure is only critical for short and stiff anchors. It is reasonable to assume that for general cast-in place headed anchors with hef ≥ 12da , the pryout failure will not govern
 
Anchor dia & embedment depth
da
 = 1.250
[in]
hef
 = 18.000
[in]

12da
 = 12 x 1.250
 = 15.000
[in]

 
Anchor embedment depth
hef
 = from user input
 = 18.000
[in]

 
ratio
 = 0.83
 > 12da
OK
 
 
Anchor Group Governing Shear Resistance
 
Anchor group governing shear resistance is the minimum value of the resistance values in
the following limit states
 
Anchor rod shear resistance
φ Vsa
 = from anchor rod shear calc above
 = 90.70
[kips]

 
Anchor reinft shear breakout resistance
φ Vnb
 = from anchor reinft shear breakout calc
 = 167.40
[kips]

 
Anchor conc shear pryout resistance
φ Vcpg
 = not govern when hef  ≥ 12da
 = N/A

 
Anchor group governing shear resistance
φ Vn
 = minimum of above values
 = 90.70
[kips]

 
 
Anchor Tension and Shear Interaction
ratio = 0.89 / 1.20
0.74
PASS
 
Anchor group tensile load
Nu
 = from user load input
 = 116.00
[kips]

Anchor group shear load
Vu
 = from user load input
 = 30.00
[kips]

 
Anchor group governing tensile resistance
φ Nn
 = from calc in above section
 = 208.69
[kips]

Anchor group governing shear resistance
φ Vn
 = from calc in above section
 = 90.70
[kips]



 
Consider anchor tension-shear interaction     check if
Nu/φ Nn
> 0.2   and  
Vu/φ Vn
> 0.2
 = Yes
ACI 318-19 17.8.3
 
anchor tension-shear interaction shall be considered
 
 = 
Nu/φ Nn
+
Vu/φ Vn
 = 0.89
ACI 318-19 17.8.3
ratio
 = 0.74
 < 1.2
OK
ACI 318-19 17.8.3
 
 
Anchor Seismic Design
N/A
 
Seismic - Tension
    Not Applicable
ACI 318-19 17.10.5.1
 
Seismic SDC < C or E <= 0.2U , additional seismic requirements in ACI 318-19 17.10.5.3 is NOT required
ACI 318-19 17.10.5.3
 
 
Seismic - Shear
    Not Applicable
ACI 318-19 17.10.6.1
 
 
Seismic SDC < C or E <= 0.2U , additional seismic requirements in ACI 318-19 17.10.6.3 is NOT required
ACI 318-19 17.10.6.3
 
 
 

  Base Plate - Load Case 1     P + Mx
    Pt =116.0 kip     Mx =0.0 kip-ft
Code=ACI 318-19

Result Summary
geometries & weld limitations = PASS
limit states max ratio 
0.98
PASS
 
 
Base Plate Thickness Check
ratio = 1.487 / 1.519
0.98
PASS
 
Column sect W14X68
d
 = 14.000
[in]
bf
 = 10.000
[in]

Base plate width & depth
B
 = 21.000
[in]
N
 = 21.000
[in]

Pedestal width & depth
bc
 = 28.000
[in]
dc
 = 28.000
[in]

 
Base plate area
A1
 = B x N
 = 441.00
[in2]
Pedestal area
A2
 = bc x dc
 = 784.00
[in2]
 
ACI 318-19 Table 14.5.6.1
k
 = min ( A2 / A1 , 2 )
 = 1.333


 
AISC Design Guide 1 - 3.1.2 on Page 15
Base plate cantilever dimension
m
 = ( N - 0.95 d ) / 2
 = 3.850
[in]
n
 = ( B - 0.8 bf ) / 2
 = 6.500
[in]
 
Base plate thickness
tp
 = from user input
 = 1.500
[in]


 
Factored tension force
Tu
 = from user input
 = 116.00
[kips]

 
No of anchors in tension
nt
 = anchor bolt pattern - 4B
 = 4

Anchor rod effective section area
Ase
 = 0.97
[in2]
futa
 = 75.0
[ksi]

Strength reduction factor
φts
 = 0.75
ACI 318-19 17.5.3(a)
Anchor rod tensile resistance
Tr
 = φts nt Ase futa
 = 218.03
[kips]
ACI 318-19 17.6.1.2
ratio
 = 0.53
 > Tu
OK
 
 
Anchor out-out spacing
s1
 = 16.000
[in]
s2
 = 16.000
[in]

Column sect W14X68
tw
 = 0.415
[in]

 
Anchor to column center distance
f
 = s1 / 2
 = 8.000
[in]
Anchor to column web center distance
f1
 = s2 / 2
 = 8.000
[in]
 
Factored tensile force in single anchor
Tb
 = Tu / nt
 = 29.00
[kips]
 




 
Bending to Column Flange X-X
AISC Design Guide 1
 
Moment lever arm
a
 = f - 0.5 d + 0.5 tf
 = 1.360
[in]
Eq 3.4.6 on Page 26
No of anchors in tension
n1
 = from user input bolt pattern
 = 2

 
Moment to column flange
Mu
 = n1 Tb x a
 = 6.57
[kip-ft]

Base plate width
B
 = from user input
 = 21.000
[in]

 
Base plate strength & strength reduction factor
Fy
 = 36.0
[ksi]
φb
 = 0.90

 
Base plate required thickness
t1s
 = (
4 Mu/B φb Fy
)0.5
 = 0.681
[in]
Eq 3.3.13a on Page 25
 
Base plate thickness
tp
 = from user input
 = 1.500
[in]

 
Base plate required thickness
t1
 = t1s
 = 0.681
[in]

ratio
 = 0.45
 < tp
OK
 
Bending in Weak Axis Direction Y-Y
 
Single anchor tensile force
Tb
 = Tu / nt
 = 29.00
[kips]
 
Base plate width & edge
w
 = 21.000
[in]
eh
 = 2.500
[in]

Base plate overhang
n
 = 6.500
[in]

 
Tb lever arm & plate effective width
x1
 = 4.000
[in]
be1
 = 6.500
[in]

 
Base plate thickness & strength
tp
 = 1.500
[in]
Fy
 = 36.0
[ksi]

 





Plate moment due to anchor tensile
Mpl
 = 
Tb x1/be1
 = 1.487
[kip-ft/in]

Plate moment resistance
φMn
 = 0.9 Fy t2p /4
 = 1.519
[kip-ft/in]

ratio
 = 0.98
 > Mpl
OK
 
 
Column Flange Fillet Weld Limitation
PASS
Min Fillet Weld Size


Thinner part joined thickness
t
 = 
 = 0.720
[in]

Min fillet weld size allowed
wmin
 = 
 = 0.250
[in]
AISC 15th  Table J2.4
Fillet weld size provided
w
 = 
 = 0.313
[in]

 ≥ wmin
OK
Min Fillet Weld Length


Fillet weld size provided
w
 = 
 = 0.313
[in]

Min fillet weld length allowed
Lmin
 = 4 x w
 = 1.250
[in]
AISC 15th  J2.2b
Min fillet weld length
L
 = 0.5 bfc - k1c
 = 3.937
[in]

 ≥ Lmin
OK
 
Column Web Fillet Weld Limitation
PASS
Min Fillet Weld Size


Thinner part joined thickness
t
 = 
 = 0.415
[in]

Min fillet weld size allowed
wmin
 = 
 = 0.188
[in]
AISC 15th  Table J2.4
Fillet weld size provided
w
 = 
 = 0.313
[in]

 ≥ wmin
OK
Min Fillet Weld Length


Fillet weld size provided
w
 = 
 = 0.313
[in]

Min fillet weld length allowed
Lmin
 = 4 x w
 = 1.250
[in]
AISC 15th  J2.2b
Min fillet weld length
L
 = db - 2 kb
 = 10.874
[in]

 ≥ Lmin
OK
 
 
W Shape Column Flange to Base Plate Weld
ratio = 4.67 / 20.88
0.22
PASS
Column section W14X68
dc
 = 14.000
[in]
bfc
 = 10.000
[in]

tfc
 = 0.720
[in]
k1c
 = 1.063
[in]



Forces on W shape flange weld
Pt
 = -116.00
[kips]  (T)
Vx
 = 0.00
[kips]

 
Flange fillet weld length-double fillet
L
 = ( bfc + bfc - 2k1c )/2 as double fillet
 = 8.937
[in]

Column flange to base plate fillet weld size
w
 = from user input
 = 516
[in]



W shape and flange area
A
 = 20.00
[in2]
Af
 = 7.20
[in2]

Tensile axial force taken by w shape one side flange
Pft
 = Pt Af / A
 = -41.76
[kips]

 
Weld tensile stress by Pft
ft
 = Pft / L
 = -4.67
[kip/in]

Weld shear stress-dbl fillet by Vx
fv
 = Vx / 2L
 = 0.00
[kip/in]

 
Weld stress combined - max
fmax
 = ( f2t + f2v )0.5
 = 4.673
[kip/in]
AISC 15th  Eq 8-11
Weld stress load angle
θ
 = tan-1 (
ft/fv
)
 = 90.0
[°]

 
Fillet Weld Strength Calc
Fillet weld leg size
w
 = 516
[in]
load angle θ
 = 90.0
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 2   for double fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.50
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 27.84
[kip/in]
AISC 15th  Eq 8-1


Base metal - column flange
thickness t
 = 0.720
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - column flange is in tension, tensile rupture as per AISC 15th  Eq J4-2 is checked
AISC 15th  J2.4
Base metal tensile rupture
Rn-b
 = Fu t
 = 46.80
[kip/in]
AISC 15th  Eq J4-2


Double fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 27.838
[kip/in]
AISC 15th  Eq 9-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 20.879
[kip/in]

ratio
 = 0.22
 > fmax
OK
 
W Shape Column Web to Base Plate Weld
ratio = 3.66 / 17.63
0.21
PASS
 
The moment Mx-x , My-y and Vx are all taken care by W shape flange weld , so W shape web to base plate weld only takes shear in strong axis direction Vy and part of axial tensile load Pw
 
Forces on column web weld
Pt
 = 116.00
[kips]  (T)
Vy
 = 30.00
[kips]

 
Column section W14X68
dc
 = 14.000
[in]
kc
 = 1.563
[in]

twc
 = 0.415
[in]

 
Fillet weld length - double fillet
L
 = dc - 2 kc
 = 10.874
[in]

W shape and web area
A
 = 20.00
[in2]
Aw
 = 4.51
[in2]

 
Tensile axial force taken by w shape web
Pw
 = Pt Aw / A
 = 26.17
[kips]

 
Column web to base plate fillet weld size
w
 = from user input
 = 516
[in]

 
Weld tensile stress from axial load
fa
 = Pw / L
 = 2.41
[kip/in]

Weld shear stress from shear load
fv
 = Vy / L
 = 2.76
[kip/in]

Weld stress combined - max
fmax
 = ( f2a + f2v )0.5
 = 3.661
[kip/in]
AISC 15th  Eq 8-11
Weld stress load angle
θ
 = tan-1 (
fa/fv
)
 = 41.1
[°]

Fillet Weld Strength Calc
Fillet weld leg size
w
 = 516
[in]
load angle θ
 = 41.1
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 2   for double fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.27
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 23.51
[kip/in]
AISC 15th  Eq 8-1


Base metal - column web
thickness t
 = 0.415
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - column web is in tension, tensile rupture as per AISC 15th  Eq J4-2 is checked
AISC 15th  J2.4
Base metal tensile rupture
Rn-b
 = Fu t
 = 26.98
[kip/in]
AISC 15th  Eq J4-2


Double fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 23.505
[kip/in]
AISC 15th  Eq 9-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 17.629
[kip/in]

ratio
 = 0.21
 > fmax
OK