Result Summary - Overall
Anchorage Design
Code=ACI 318-19

Result Summary - Overall
geometries & weld limitations = PASS
limit states max ratio 
0.96
PASS
 
Anchor Bolt - LC 1     P + Mx
geometries & weld limitations = PASS
limit states max ratio 
0.00
PASS


 
Anchor Bolt - LC 2     P + Mx
geometries & weld limitations = PASS
limit states max ratio 
0.70
PASS


 
Shear Key - LC 1     Vy
geometries & weld limitations = PASS
limit states max ratio 
0.96
PASS
 
Shear Key - LC 2     Vy
geometries & weld limitations = PASS
limit states max ratio 
0.96
PASS


 
Base Plate - LC 1     P + Mx
geometries & weld limitations = PASS
limit states max ratio 
0.83
PASS
 
Base Plate - LC 2     P + Mx
geometries & weld limitations = PASS
limit states max ratio 
0.82
PASS
 
 
 

  Sketch
Anchorage Design
Code=ACI 318-19

 
 
 
 
Anchor Forces Calculation
 


Anchor Tensile Force Calculation


 
User Input
 
 
 
Anchor edge distance
c1u
 = 13.000
[in]
c2u
 = 10.000
[in]
c3u
 = 13.000
[in]
c4u
 = 10.000
[in]
 
Anchor out-out spacing
s1u
 = 10.000
[in]
s2u
 = 10.000
[in]
 
Anchor embedment depth
hef
 = 20.000
[in]
 
Design Load - Load Case 1
 
Axial force
Axial P
 = 545.00
[kips]
  in compression
 
Shear forces
Vy
 = 175.00
[kips]
Vx
 = 0.00
[kips]
 
Moment forces
Mx
 = 0.00
[kip-ft]
My
 = 0.00
[kip-ft]
 
Design Load - Load Case 2
 
Axial force
Axial P
 = -85.00
[kips]
  in tension
 
Shear forces
Vy
 = 175.00
[kips]
Vx
 = 0.00
[kips]
 
Moment forces
Mx
 = 0.00
[kip-ft]
My
 = 0.00
[kip-ft]
Anchor Layout Plan
 
Load Case 1 - Anchor Additional Tension From Moment Caused by Vy
 
 
Shear key shear force
Vu
 = from user load input
 = 175.00
[kips]

 
Refer to sketch below , shear key's shear reaction takes moment to base plate center line and this moment will cause additional tensile force on anchors
 
 
Base plate & grout thickness
tp
 = 2.000
[in]
g
 = 1.000
[in]

Shear key depth
dsk
 = 8.000
[in]

Shear key shear V to base plate center moment arm distance
dms
 = 0.5( dsk - g) + g + 0.5 tp
 = 5.500
[in]

Moment by shear key shear
Mu
 = Vu dms
 = 80.21
[kip-ft]

 
Anchor out-out spacing - in shear direction
s1
 = from user input
 = 10.000
[in]

Column depth - in shear direction
d
 = sect W18X86
 = 18.400
[in]

Exterior anchhor moment arm
dm
 = d + 0.5( s1 - d )
 = 14.200
[in]

 
Anchor number along exterior anchhor
nbw
 = from user input
 = 2

 
Single anchor tension from moment caused by shear key
Tsk
 = 
Mu/dm x nbw
 = 33.89
[kips]

 
 
Load Case 2 - Anchor Additional Tension From Moment Caused by Vy
 
 
Shear key shear force
Vu
 = from user load input
 = 175.00
[kips]

 
Refer to sketch below , shear key's shear reaction takes moment to base plate center line and this moment will cause additional tensile force on anchors
 
 
Base plate & grout thickness
tp
 = 2.000
[in]
g
 = 1.000
[in]

Shear key depth
dsk
 = 8.000
[in]

Shear key shear V to base plate center moment arm distance
dms
 = 0.5( dsk - g) + g + 0.5 tp
 = 5.500
[in]

Moment by shear key shear
Mu
 = Vu dms
 = 80.21
[kip-ft]

 
Anchor out-out spacing - in shear direction
s1
 = from user input
 = 10.000
[in]

Column depth - in shear direction
d
 = sect W18X86
 = 18.400
[in]

Exterior anchhor moment arm
dm
 = d + 0.5( s1 - d )
 = 14.200
[in]

 
Anchor number along exterior anchhor
nbw
 = from user input
 = 2

 
Single anchor tension from moment caused by shear key
Tsk
 = 
Mu/dm x nbw
 = 33.89
[kips]

 
 
 
 

  Anchor Bolt - Load Case 1     P + Mx
    Pc =545.0 kip     Vy =175.0 kip     Mx =0.0 kip-ft
Code=ACI 318-19

Result Summary
geometries & weld limitations = PASS
limit states max ratio 
0.00
PASS
 
 
Min Anchor Dimensions Check Per PIP STE05121 - Optional
PASS
 
Min Anchor Dimensions Check
 
Check min anchor dimensions as per PIP STE05121 Application of ASCE Anchorage Design for Petrochemical Facilities - 2018   Table 1 as shown below.
 
This check is NOT a code requirement.   User can turn this check On/Off by changing setting at Anchor Bolt --> Anchor Bolt - Config & Setting --> Check min anchor spacing and edge distance as per PIP STE05121 Table 1
 
Anchor Rod Inputs


Anchor rod grade and dia
grade
 = A320 Gr L7
da
 = 112
[in]

 
Min Anchor Edge Distance


 
Anchor edge distance
c1
 = 13.000
[in]
c2
 = 10.000
[in]

c3
 = 13.000
[in]
c4
 = 10.000
[in]

 
Min anchor edge distance required
cmin
 = from PIP STE05121 Table 1 below
 = 9.000
[in]
PIP STE05121 Table 1
 
Min anchor edge distance
c
 = min(c1 , c2 , c3 , c4 )
 = 10.000
[in]

 ≥ cmin
OK
Min Anchor Spacing


 
Min anchor spacing required
smin
 = from PIP STE05121 Table 1 below
 = 6.000
[in]
PIP STE05121 Table 1
 
Anchor bolt pattern
 = from user input
 = 4A

 
Min anchor spacing
s
 = from user input
 = 10.000
[in]

 ≥ smin
OK
Min Anchor Embedment Depth


 
Min anchor embedment required
hmin
 = from PIP STE05121 Table 1 below
 = 18.000
[in]
PIP STE05121 Table 1
 
Min anchor embedment depth
hef
 = from user input
 = 20.000
[in]

 ≥ hmin
OK
 


 
Table 1 from PIP STE05121 Application of ASCE Anchorage Design for Petrochemical Facilities - 2018
 

 
 
Minimum Anchor Dimensions Check
PASS
 
Min Anchor Dimensions Check
 
When anchor reinforcement or supplementary reinforcement is provided, the check on min edge distance
is not required. Only min anchor spacing is checked as per ACI 318-19 Table 17.9.2(a)
ACI 318-19 17.9.1
 


 
ACI 318-19 17.9.1
 
 


 
Anchor Rod Inputs


Anchor rod grade and dia
grade
 = A320 Gr L7
da
 = 112
[in]

 
Min Anchor Spacing


 
Min anchor spacing required
smin
 = 6 x da
 = 9.000
[in]
ACI 318-19 Table 17.9.2(a)
 
Anchor bolt pattern
 = from user input
 = 4A

 
Min anchor spacing
s
 = from user input
 = 10.000
[in]

 ≥ smin
OK
 


 
ACI 318-19 Table 17.9.2(a)
 
 
 
 
Anchor Tensile Resistance and Tension - Shear Interaction
N/A
 
There is no tensile load applied to anchor/anchor group, either no tensile load from user load input or it's small moment
case and tension caused by moment is offset by axial compression load, so Anchor Tension Resistance and Tension - Shear
Interaction checks are Not Applicable
 
 
 
Anchor Shear Resistance and Tension - Shear Interaction
N/A
 
There is no shear load from user load input or shear key is used and all shear is taken by shear key, so
Anchor Shear Resistance and Tension - Shear Interaction checks are Not Applicable
 
 
 
Anchor Seismic Design
N/A
 
Seismic - Tension
    Not Applicable
ACI 318-19 17.10.5.1
 
There is no tensile load applied to anchor/anchor group, either there is no tensile load from user load input or
tension caused by moment is offset by axial compression load, so Seismic Tension check is NOT required
 
 
Seismic - Shear
    Not Applicable
ACI 318-19 17.10.6.1
 
There is no shear load applied to anchor/anchor group, so Seismic Shear check is NOT required
 
 
 

  Anchor Bolt - Load Case 2     P + Mx
    Pt =85.0 kip     Vy =175.0 kip     Mx =0.0 kip-ft
Code=ACI 318-19

Result Summary
geometries & weld limitations = PASS
limit states max ratio 
0.70
PASS
 
 
Min Anchor Dimensions Check Per PIP STE05121 - Optional
PASS
 
Min Anchor Dimensions Check
 
Check min anchor dimensions as per PIP STE05121 Application of ASCE Anchorage Design for Petrochemical Facilities - 2018   Table 1 as shown below.
 
This check is NOT a code requirement.   User can turn this check On/Off by changing setting at Anchor Bolt --> Anchor Bolt - Config & Setting --> Check min anchor spacing and edge distance as per PIP STE05121 Table 1
 
Anchor Rod Inputs


Anchor rod grade and dia
grade
 = A320 Gr L7
da
 = 112
[in]

 
Min Anchor Edge Distance


 
Anchor edge distance
c1
 = 13.000
[in]
c2
 = 10.000
[in]

c3
 = 13.000
[in]
c4
 = 10.000
[in]

 
Min anchor edge distance required
cmin
 = from PIP STE05121 Table 1 below
 = 9.000
[in]
PIP STE05121 Table 1
 
Min anchor edge distance
c
 = min(c1 , c2 , c3 , c4 )
 = 10.000
[in]

 ≥ cmin
OK
Min Anchor Spacing


 
Min anchor spacing required
smin
 = from PIP STE05121 Table 1 below
 = 6.000
[in]
PIP STE05121 Table 1
 
Anchor bolt pattern
 = from user input
 = 4A

 
Min anchor spacing
s
 = from user input
 = 10.000
[in]

 ≥ smin
OK
Min Anchor Embedment Depth


 
Min anchor embedment required
hmin
 = from PIP STE05121 Table 1 below
 = 18.000
[in]
PIP STE05121 Table 1
 
Min anchor embedment depth
hef
 = from user input
 = 20.000
[in]

 ≥ hmin
OK
 


 
Table 1 from PIP STE05121 Application of ASCE Anchorage Design for Petrochemical Facilities - 2018
 

 
 
Minimum Anchor Dimensions Check
PASS
 
Min Anchor Dimensions Check
 
When anchor reinforcement or supplementary reinforcement is provided, the check on min edge distance
is not required. Only min anchor spacing is checked as per ACI 318-19 Table 17.9.2(a)
ACI 318-19 17.9.1
 


 
ACI 318-19 17.9.1
 
 


 
Anchor Rod Inputs


Anchor rod grade and dia
grade
 = A320 Gr L7
da
 = 112
[in]

 
Min Anchor Spacing


 
Min anchor spacing required
smin
 = 6 x da
 = 9.000
[in]
ACI 318-19 Table 17.9.2(a)
 
Anchor bolt pattern
 = from user input
 = 4A

 
Min anchor spacing
s
 = from user input
 = 10.000
[in]

 ≥ smin
OK
 


 
ACI 318-19 Table 17.9.2(a)
 
 
 
 
Anchor Rod Tensile Resistance
ratio = 55.1 / 132.2
0.42
PASS
 
Anchor rod effective section area
Ase
 = 1.41
[in2]
futa
 = 125.0
[ksi]

Anchor rod steel strength in tension
Nsa
 = Ase futa
 = 176.25
[kips]
ACI 318-19 17.6.1.2
 


 
Max Single Anchor Tensile Force
 
Anchor group axial tensile force
P
 = from user load input
 = -85.00
[kips]
in tension
No of anchors in the group
nt
 = 
 = 4

 
Refer to Anchor Forces Calculation section above , shear key's shear reaction takes moment to base plate center line and this moment will cause additional tensile force on anchors
 
Single anchor tension from moment caused by shear key reaction force
Tsk
 = from Anchor Forces Calculation above
 = 33.89
[kips]
in tension
 
Single anchor tensile force
T
 = Tsk - P / nt
 = 55.14
[kips]



 
Strength reduction factor
φts
 = 0.75
ACI 318-19 17.5.3(a)
φts Nsa
 = 0.75 x 176.25
 = 132.19
[kips]

ratio
 = 0.42
 > T
OK
 
Anchor Reinforcement Tensile Breakout Resistance
ratio = 85.0 / 142.0
0.60
PASS
 
Concrete & rebar strength
fc
 = 4.5
[ksi]
fy
 = 60.0
[ksi]

Ver rebar no & area
bar no
 = #8
As
 = 0.79
[in2]

db
 = 1"

 
Ψe
 = 1.0
Ψr
 = 1.0
ACI 318-19 Table 25.4.3.2
Ψo
 = 1.0
Ψc
 = 0.90

 
Hook rebar development length
ldh
 = max(
fy Ψe Ψr Ψo Ψc/55 λ fc
d1.5b , 8db , 6" )
 = 14.636
[in]
ACI 318-19 25.4.3.1
 


 
When anchor reinforcement is used, rebar development length on both sides of concrete failure breakout line shall meet the min. development length requirement
 
Anchor embedment depth
hef
 = from user input
 = 20.000
[in]
Avg ver. bar center to anchor rod center distance
dar
 = from user input
 = 4.000
[in]
 
 
ACI 318-19 25.4.3.1
Min rebar development length required
lmin
 = max( 8db , 6" )
 = 8.000
[in]
 





 
Actual rebar development length
la
 = hef - top cover (2") - dar tan35
 = 15.199
[in]

ratio
 = 0.53
 > lmin
OK
ACI 318-19 25.4.3.1
 


 
Anchor group tensile load
Nu
 = from user load input
 = 85.00
[kips]

 
No of ver rebar effective to resist anchor tension
nv
 = from user input
 = 4.0

Rebar resistance factor
φs
 = 0.75
ACI 318-19 17.5.3
 
Anchor reinft breakout resistance
φ Nn
 = φs nv As fy
 = 142.01
[kips]
ACI 318-19 17.5.2.1 (a)
 
ratio
 = 0.60
 > Nu
OK
 
Anchor Pullout Resistance
ratio = 55.1 / 78.6
0.70
PASS
 
Anchor head net bearing area & conc strength
Abrg
 = 3.12
[in2]
fc
 = 4.5
[ksi]

Single bolt pullout resistance
Np
 = 8 Abrg fc
 = 112.25
[kips]
ACI 318-19 17.6.3.2.2a
Pullout cracking factor
ΨcP
 = for cracked concrete
 = 1.00
ACI 318-19 17.6.3.3.1(b)
 


 
Max Single Anchor Tensile Force
 
Anchor group axial tensile force
P
 = from user load input
 = -85.00
[kips]
in tension
No of anchors in the group
nt
 = 
 = 4

 
Refer to Anchor Forces Calculation section above , shear key's shear reaction takes moment to base plate center line and this moment will cause additional tensile force on anchors
 
Single anchor tension from moment caused by shear key reaction force
Tsk
 = from Anchor Forces Calculation above
 = 33.89
[kips]
in tension
 
Single anchor tensile force
T
 = Tsk - P / nt
 = 55.14
[kips]



 
Strength reduction factor
φtc
 = 0.70
 pullout strength is always Condition B
ACI 318-19 17.5.3(c)
φtc Npn
 = φtc ΨcP Np
 = 78.57
[kips]

 
Seismic design strength reduction
 = x 1.0   not applicable
 = 78.57
[kips]
ACI 318-19 17.10.5.4(c)
 
ratio
 = 0.70
 > T
OK
 
Anchor Side Blowout Resistance
N/A
Anchor Inputs


Anchor edge distance
c1
 = 13.000
[in]
c2
 = 10.000
[in]

c3
 = 13.000
[in]
c4
 = 10.000
[in]

 
Anchor out-out spacing
s1
 = 10.000
[in]
s2
 = 10.000
[in]




 
Side Edges Along X-X Axis - Width Edges
 
Anchor edge distance in Y direction
ca1
 = min (c1 , c3 )
 = 13.000
[in]

Anchor embedment depth
hef
 = from user input
 = 20.000
[in]

 
Side blowout check is required on this edge or not
 = check if hef > 2.5 ca1
 = False
ACI 318-19 17.6.4.1
 
Side blowout check is NOT required
ACI 318-19 17.6.4.1
 
 
Side Edges Along Y-Y Axis - Depth Edges
 
Anchor edge distance in X direction
ca2
 = min (c2 , c4 )
 = 10.000
[in]

Anchor embedment depth
hef
 = from user input
 = 20.000
[in]

 
Side blowout check is required on this edge or not
 = check if hef > 2.5 ca2
 = False
ACI 318-19 17.6.4.1
 
Side blowout check is NOT required
ACI 318-19 17.6.4.1
 
 
 
Anchor Group Governing Tensile Resistance
 
Anchor group governing tensile resistance is the minimum value of the resistance values in
the following limit states
 
No of anchors in anchor group
resisting tension
nt
 = from Anchor Forces Calculation above
 = 4

 
Anchor rod tensile resistance
nt φ Nsa
 = 4 x 132.19
 = 528.75
[kips]

 
Anchor concrete breakout resistance
φ Nn
 = from anchor reinft tensile breakout
 = 142.01
[kips]

resistance calc above

 
Anchor pullout resistance
nt φ Npm
 = 4 x 78.57
 = 314.29
[kips]

 
Anchor side blowout resistance
φ Nsbg
 = from anchor side blowout calc above
 = N/A

 
Anchor group governing tensile resistance
φ Nn
 = minimum of above values
 = 142.01
[kips]

 
 
Anchor Shear Resistance and Tension - Shear Interaction
N/A
 
There is no shear load from user load input or shear key is used and all shear is taken by shear key, so
Anchor Shear Resistance and Tension - Shear Interaction checks are Not Applicable
 
 
 
Anchor Seismic Design
N/A
 
Seismic - Tension
    Not Applicable
ACI 318-19 17.10.5.1
 
Seismic SDC < C or E <= 0.2U , additional seismic requirements in ACI 318-19 17.10.5.3 is NOT required
ACI 318-19 17.10.5.3
 
 
Seismic - Shear
    Not Applicable
ACI 318-19 17.10.6.1
 
There is no shear load applied to anchor/anchor group, so Seismic Shear check is NOT required
 
 
 

  Shear Key - Load Case 1     Vy
    Pc =545.0 kip     Vy =175.0 kip
Code=ACI 318-19

Result Summary
geometries & weld limitations = PASS
limit states max ratio 
0.96
PASS
 
 
Shear Key Dimensions Check
PASS
 


Shear Lug Dimensions
 
Shear lug embedment depth and grout thickness
dsl
 = 8.000
[in]
g
 = 1.000
[in]

Shear lug embedment depth excluding grout
hsl
 = dsl - g
 = 7.000
[in]
 
Anchor out-out spacing in shear direction
s1
 = from user input
 = 10.000
[in]
 
csl is anchor center to shear lug center distance in shear direction, when there are
more than one row of anchor, take the average distance of multiple rows of anchor
 
Anchor center to shear lug center distance in shear direction
csl
 = 0.5 x s1
 = 5.000
[in]
 
Anchor embedment depth
hef
 = from user input
 = 20.000
[in]
 


ACI 318-19 Fig. R17.11.1.1a

 
Check if hef / hsl ≥ 2.5
 = hef / hsl
 = 2.86
ACI 318-19
 ≥ 2.5
OK
17.11.1.1.8 (a)
 
Check if hef / csl ≥ 2.5
 = hef / csl
 = 4.00

 ≥ 2.5
OK
17.11.1.1.8 (b)
 
 
 
Shear Key Anchor Reinforcement Breakout Strength
ratio = 175.0 / 251.1
0.70
PASS
 
Concrete Breakout Toward Free Edge
ACI 318-19
 
 
User needs to provide hor anchor reinforcement such as hor hair pin or enclosed stirrup around the shear key
pocket to resist concrete breakout. When the non-enclosed rebar such as hor hair pin is used , user must
ensure that rebar has adequate development length ld or ldh on both sides of failure plane as shown in
ACI 318-19 Fig. R17.5.2.1b(i)
17.5.2.1
Fig. R17.5.2.1b(i)
 
* For tie reinforcement, only the top most 2 or 3 layers of ties (2" from TOC and 2x3" after) are effective
 
* Assume 100% of hor. tie bars can develop full yield strength as per user's choice in Anchor Reinforcement input
 
Total number of hor tie bar
n
 = nleg (leg) x nlay (layer)
 = 18

 
Shear load on anchor group
Vu
 = from user load input
 = 175.00
[kips]

 
Rebar resistance factor
φs
 = 0.75
17.5.3 (a)
Hor rebar area & strength
As
 = 0.31
[in2]
fyh
 = 60.0
[ksi]

 
Single tie bar tension resistance
Tr
 = φs fyh As
 = 13.95
[kips]

 
Total tie bar tension resistance
φs Vnb
 = n x Tr
 = 251.10
[kips]
17.5.2.1 (b)
 
ratio
 = 0.70
 > Vu
OK
 
Shear Key Conc Bearing Strength
ratio = 175.00 / 600.43
0.29
PASS
Shear lug sect HSS8.625X0.625
OD
 = 8.625
[in]
t
 = 0.581
[in]

 
Shear lug embed depth
d
 = from user input
 = 8.000
[in]

Grout thickness
g
 = from user input
 = 1.000
[in]

Conc compressive strength
fc
 = from user input
 = 4.5
[ksi]



Shear Lug Bearing Factor
 
Compressive load in anchor group
Pu
 = from user load input
 = 545.00
[kips]

Base plate area
Abp
 = 17.000 x 21.000
 = 357.00
[in2]

Shear lug bearing factor
Ψb,sl
 = 1 + 4
Pu/Abp fc
≤ 2.0
 = 2.00
ACI 318-19 17.11.2.2.1c


Shear in Y Direction
Shear in Y direction
Vy
 = from user input
 = 175.00
[kips]

 
Shear lug bearing area
Aef,sl
 = OD (d - g )
 = 60.38
[in2]

Shear lug bearing strength
Vb,sl
 = 1.7 fc Aef,sl Ψb,sl
 = 923.74
[kips]
ACI 318-19 17.11.2.1
Resistance factor-LRFD
φ
 = 0.65
ACI 318-19 17.11.1.1.4
φVb,sl
 = 
 = 600.43
[kips]

ratio
 = 0.29
 > Vy
OK
 
Shear Key Flexural Strength
ratio = 65.63 / 129.93
0.51
PASS
Shear key sect HSS8.625X0.625
OD
 = 8.625
[in]
t
 = 0.581
[in]

Zs
 = 37.66
[in3]
Zw
 = 37.66
[in3]

Shear key steel yield strength
Fy
 = 46.0
[ksi]

 
Shear key embed depth
d
 = from user input
 = 8.000
[in]

Grout thickness
g
 = from user input
 = 1.000
[in]



Shear Key Flexure in Y Direction
Shear in Y direction
Vy
 = from user input
 = 175.00
[kips]

 
Moment caused by shear
Ms
 = Vy [ g + 0.5(d - g) ]
 = 65.63
[kip-ft]

Shear key flexural capacity
Mn
 = Fy Zs
 = 144.36
[kip-ft]

Resistance factor-LRFD
φ
 = 0.90

φMn
 = 
 = 129.93
[kip-ft]

ratio
 = 0.51
 > Ms
OK
 
Shear Key Shear Strength
ratio = 175.00 / 182.36
0.96
PASS
Shear key sect HSS8.625X0.625
OD
 = 8.625
[in]
t
 = 0.581
[in]

 
Shear key embed depth
d
 = from user input
 = 8.000
[in]

Grout thickness
g
 = from user input
 = 1.000
[in]

Shear key steel yield strength
Fy
 = 46.0
[ksi]



Shear in Y Direction
Shear in Y direction
Vy
 = from user input
 = 175.00
[kips]

 
CHS sect wall center line radius
r
 = 0.5 ( OD - t )
 = 4.022
[in]

CHS sect shear area
Aw
 = π r t
 = 7.34
[in2]

 
Shear key shear strength
Vn
 = 0.6 Fy Aw
 = 202.62
[kips]

Resistance factor-LRFD
φ
 = 0.90

φVn
 = 
 = 182.36
[kips]

ratio
 = 0.96
 > Vy
OK
 
 
 

  Shear Key - Load Case 2     Vy
    Pt =85.0 kip     Vy =175.0 kip
Code=ACI 318-19

Result Summary
geometries & weld limitations = PASS
limit states max ratio 
0.96
PASS
 
 
Shear Key Dimensions Check
PASS
 


Shear Lug Dimensions
 
Shear lug embedment depth and grout thickness
dsl
 = 8.000
[in]
g
 = 1.000
[in]

Shear lug embedment depth excluding grout
hsl
 = dsl - g
 = 7.000
[in]
 
Anchor out-out spacing in shear direction
s1
 = from user input
 = 10.000
[in]
 
csl is anchor center to shear lug center distance in shear direction, when there are
more than one row of anchor, take the average distance of multiple rows of anchor
 
Anchor center to shear lug center distance in shear direction
csl
 = 0.5 x s1
 = 5.000
[in]
 
Anchor embedment depth
hef
 = from user input
 = 20.000
[in]
 


ACI 318-19 Fig. R17.11.1.1a

 
Check if hef / hsl ≥ 2.5
 = hef / hsl
 = 2.86
ACI 318-19
 ≥ 2.5
OK
17.11.1.1.8 (a)
 
Check if hef / csl ≥ 2.5
 = hef / csl
 = 4.00

 ≥ 2.5
OK
17.11.1.1.8 (b)
 
 
 
Shear Key Anchor Reinforcement Breakout Strength
ratio = 175.0 / 251.1
0.70
PASS
 
Concrete Breakout Toward Free Edge
ACI 318-19
 
 
User needs to provide hor anchor reinforcement such as hor hair pin or enclosed stirrup around the shear key
pocket to resist concrete breakout. When the non-enclosed rebar such as hor hair pin is used , user must
ensure that rebar has adequate development length ld or ldh on both sides of failure plane as shown in
ACI 318-19 Fig. R17.5.2.1b(i)
17.5.2.1
Fig. R17.5.2.1b(i)
 
* For tie reinforcement, only the top most 2 or 3 layers of ties (2" from TOC and 2x3" after) are effective
 
* Assume 100% of hor. tie bars can develop full yield strength as per user's choice in Anchor Reinforcement input
 
Total number of hor tie bar
n
 = nleg (leg) x nlay (layer)
 = 18

 
Shear load on anchor group
Vu
 = from user load input
 = 175.00
[kips]

 
Rebar resistance factor
φs
 = 0.75
17.5.3 (a)
Hor rebar area & strength
As
 = 0.31
[in2]
fyh
 = 60.0
[ksi]

 
Single tie bar tension resistance
Tr
 = φs fyh As
 = 13.95
[kips]

 
Total tie bar tension resistance
φs Vnb
 = n x Tr
 = 251.10
[kips]
17.5.2.1 (b)
 
ratio
 = 0.70
 > Vu
OK
 
Shear Key Conc Bearing Strength
ratio = 175.00 / 264.02
0.66
PASS
Shear lug sect HSS8.625X0.625
OD
 = 8.625
[in]
t
 = 0.581
[in]

 
Shear lug embed depth
d
 = from user input
 = 8.000
[in]

Grout thickness
g
 = from user input
 = 1.000
[in]

Conc compressive strength
fc
 = from user input
 = 4.5
[ksi]



Shear Lug Bearing Factor
 
Anchor rod effective section area
Ase
 = 1.41
[in2]
futa
 = 125.0
[ksi]

Anchor rod steel strength in tension
Nsa
 = Ase futa
 = 176.25
[kips]
ACI 318-19 17.6.1.2
No of anchors in tension
nt
 = 
 = 4

Tensile load in anchor group
Pu
 = from user load input
 = -85.00
[kips]

Shear lug bearing factor
Ψb,sl
 = 1 +
Pu/nt Nsa
≤ 1.0
 = 0.88
ACI 318-19 17.11.2.2.1a


Shear in Y Direction
Shear in Y direction
Vy
 = from user input
 = 175.00
[kips]

 
Shear lug bearing area
Aef,sl
 = OD (d - g )
 = 60.38
[in2]

Shear lug bearing strength
Vb,sl
 = 1.7 fc Aef,sl Ψb,sl
 = 406.18
[kips]
ACI 318-19 17.11.2.1
Resistance factor-LRFD
φ
 = 0.65
ACI 318-19 17.11.1.1.4
φVb,sl
 = 
 = 264.02
[kips]

ratio
 = 0.66
 > Vy
OK
 
Shear Key Flexural Strength
ratio = 65.63 / 129.93
0.51
PASS
Shear key sect HSS8.625X0.625
OD
 = 8.625
[in]
t
 = 0.581
[in]

Zs
 = 37.66
[in3]
Zw
 = 37.66
[in3]

Shear key steel yield strength
Fy
 = 46.0
[ksi]

 
Shear key embed depth
d
 = from user input
 = 8.000
[in]

Grout thickness
g
 = from user input
 = 1.000
[in]



Shear Key Flexure in Y Direction
Shear in Y direction
Vy
 = from user input
 = 175.00
[kips]

 
Moment caused by shear
Ms
 = Vy [ g + 0.5(d - g) ]
 = 65.63
[kip-ft]

Shear key flexural capacity
Mn
 = Fy Zs
 = 144.36
[kip-ft]

Resistance factor-LRFD
φ
 = 0.90

φMn
 = 
 = 129.93
[kip-ft]

ratio
 = 0.51
 > Ms
OK
 
Shear Key Shear Strength
ratio = 175.00 / 182.36
0.96
PASS
Shear key sect HSS8.625X0.625
OD
 = 8.625
[in]
t
 = 0.581
[in]

 
Shear key embed depth
d
 = from user input
 = 8.000
[in]

Grout thickness
g
 = from user input
 = 1.000
[in]

Shear key steel yield strength
Fy
 = 46.0
[ksi]



Shear in Y Direction
Shear in Y direction
Vy
 = from user input
 = 175.00
[kips]

 
CHS sect wall center line radius
r
 = 0.5 ( OD - t )
 = 4.022
[in]

CHS sect shear area
Aw
 = π r t
 = 7.34
[in2]

 
Shear key shear strength
Vn
 = 0.6 Fy Aw
 = 202.62
[kips]

Resistance factor-LRFD
φ
 = 0.90

φVn
 = 
 = 182.36
[kips]

ratio
 = 0.96
 > Vy
OK
 
 
 

  Base Plate - Load Case 1     P + Mx
    Pc =545.0 kip     Mx =0.0 kip-ft
Code=ACI 318-19

Result Summary
geometries & weld limitations = PASS
limit states max ratio 
0.83
PASS
 
 
Minimum Base Plate Thickness for Rigidity
ratio = 1.015 / 2.000
0.51
PASS
 
Please note this check is NOT a code required check. It's a check to meet the design assumption only
 
To ensure that base plate is rigid and anchor tensile forces are elastic linearly distributed, the base plate thickness ideally to be thicker than the 1/4 of overhangs beyond yield line in both directions as indicated on the right sketch.
 
User can turn this check On/Off in Anchor Bolt - Config & Setting by checking or unchecking the option of Min base plate thickness tp ≥ max of base plate overhangs m/4 and n/4
 


Column sect W18X86
d
 = 18.400
[in]
bf
 = 11.100
[in]

Base plate width & depth
B
 = 17.000
[in]
N
 = 21.000
[in]

 
AISC Design Guide 1 - 3.1.2 on Page 15
Base plate cantilever dimension
m
 = ( N - 0.95 d ) / 2
 = 1.760
[in]
n
 = ( B - 0.8 bf ) / 2
 = 4.060
[in]
 
Base plate thickness
tp
 = from user input
 = 2.000
[in]
 
Suggested minimum base plate thickness for rigidity
tmin
 = max ( m/4 , n/4 )
 = 1.015
[in]

ratio
 = 0.51
 < tp
OK
 
 
Base Plate Thickness Check
ratio = 1.058 / 2.000
0.53
PASS
 
Column sect W18X86
d
 = 18.400
[in]
bf
 = 11.100
[in]

Base plate width & depth
B
 = 17.000
[in]
N
 = 21.000
[in]

Pedestal width & depth
bc
 = 30.000
[in]
dc
 = 36.000
[in]

 
Base plate area
A1
 = B x N
 = 357.00
[in2]
Pedestal area
A2
 = bc x dc
 = 1080.0
[in2]
 
ACI 318-19 Table 14.5.6.1
k
 = min ( A2 / A1 , 2 )
 = 1.739


 
AISC Design Guide 1 - 3.1.2 on Page 15
Base plate cantilever dimension
m
 = ( N - 0.95 d ) / 2
 = 1.760
[in]
n
 = ( B - 0.8 bf ) / 2
 = 4.060
[in]
 
Base plate thickness
tp
 = from user input
 = 2.000
[in]


 
Concrete Base Bearing Strength
 
Factored compression force
Pu
 = from user input
 = 545.00
[kips]

 
ACI 318-19
k
 = min ( A2 / A1 , 2 )
 = 1.739
Table 14.5.6.1
 
Concrete strength & strength reduction factor
fc
 = 4.5
[ksi]
φc
 = 0.65
Table 21.2.1 (d)
Pedestal bearing strength
φc Pn
 = φc k 0.85 fc A1
 = 1543.8
[kips]
Table 14.5.6.1
ratio
 = 0.35
 > Pu
OK
 
Base Plate Required Thickness
 
Factored forces on base plate
Pu
 = 545.00
[kips]
Mu
 = 0.00
[kip-ft]

 
Column sect W18X86
d
 = 18.400
[in]
bf
 = 11.100
[in]
ACI 318-19
Concrete strength & strength reduction factor
fc
 = 4.5
[ksi]
φc
 = 0.65
Table 21.2.1 (d)
AISC Design Guide 1
X
 = 
4 d bf/( d + bf )2
Pu/φc Pn
 = 0.331
3.1.2 on Page 16
λ
 = min(
2 X/1 + 1 - X
, 1 )
 = 0.633
3.1.2 on Page 16
λ n'
 = λ
d bf/4
 = 2.263
[in]
3.1.3 on Page 17
L
 = max( m , n , λ n' )
 = 4.060
[in]

Base plate strength & strength reduction factor
Fy
 = 50.0
[ksi]
φb
 = 0.90

Base plate thickness
tp
 = from user input
 = 2.000
[in]

 
Base plate min. thickness required
tmin
 = L [
2 Pu/φb Fy B N
]0.5
 = 1.058
[in]
3.1.2 on Page 16
ratio
 = 0.53
 < tp
OK
 
 
Column Flange Fillet Weld Limitation
PASS
Min Fillet Weld Size


Thinner part joined thickness
t
 = 
 = 0.770
[in]

Min fillet weld size allowed
wmin
 = 
 = 0.313
[in]
AISC 15th  Table J2.4
Fillet weld size provided
w
 = 
 = 0.313
[in]

 ≥ wmin
OK
Min Fillet Weld Length


Fillet weld size provided
w
 = 
 = 0.313
[in]

Min fillet weld length allowed
Lmin
 = 4 x w
 = 1.250
[in]
AISC 15th  J2.2b
Min fillet weld length
L
 = 0.5 bfc - k1c
 = 4.487
[in]

 ≥ Lmin
OK
 
Column Web Fillet Weld Limitation
PASS
Min Fillet Weld Size


Thinner part joined thickness
t
 = 
 = 0.480
[in]

Min fillet weld size allowed
wmin
 = 
 = 0.188
[in]
AISC 15th  Table J2.4
Fillet weld size provided
w
 = 
 = 0.313
[in]

 ≥ wmin
OK
Min Fillet Weld Length


Fillet weld size provided
w
 = 
 = 0.313
[in]

Min fillet weld length allowed
Lmin
 = 4 x w
 = 1.250
[in]
AISC 15th  J2.2b
Min fillet weld length
L
 = db - 2 kb
 = 15.150
[in]

 ≥ Lmin
OK
 
 
W Shape Column Flange to Base Plate Weld
ratio = 0.00 / 13.92
0.00
PASS
Column section W18X86
dc
 = 18.400
[in]
bfc
 = 11.100
[in]

tfc
 = 0.770
[in]
k1c
 = 1.063
[in]



Forces on W shape flange weld
Pc
 = 545.00
[kips]  (C)
Vx
 = 0.00
[kips]

 
Flange fillet weld length-double fillet
L
 = ( bfc + bfc - 2k1c )/2 as double fillet
 = 10.037
[in]

Column flange to base plate fillet weld size
w
 = from user input
 = 516
[in]



Weld shear stress-dbl fillet by Vx
fv
 = Vx / 2L
 = 0.00
[kip/in]

 
Weld stress combined - max
fmax
 = fv
 = 0.000
[kip/in]
AISC 15th  Eq 8-11
Weld stress load angle
θ
 = 
 = 0.0
[°]

 
Fillet Weld Strength Calc
Fillet weld leg size
w
 = 516
[in]
load angle θ
 = 0.0
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 2   for double fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.00
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 18.56
[kip/in]
AISC 15th  Eq 8-1


Base metal - column flange
thickness t
 = 0.770
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - column flange is in shear, shear rupture as per AISC 15th  Eq J4-4 is checked
AISC 15th  J2.4
Base metal shear rupture
Rn-b
 = 0.6 Fu t
 = 30.03
[kip/in]
AISC 15th  Eq J4-4


Double fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 18.559
[kip/in]
AISC 15th  Eq 9-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 13.919
[kip/in]

ratio
 = 0.00
 > fmax
OK
 
W Shape Column Web to Base Plate Weld
ratio = 11.55 / 13.92
0.83
PASS
 
The moment Mx-x , My-y and Vx are all taken care by W shape flange weld and the column axial force is compressive force, so W shape web to base plate weld only takes shear in strong axis direction Vy
 
Forces on column web weld
Pc
 = 545.00
[kips]  (C)
Vy
 = 175.00
[kips]

 
Column section W18X86
dc
 = 18.400
[in]
kc
 = 1.625
[in]

twc
 = 0.480
[in]

 
Fillet weld length - double fillet
L
 = dc - 2 kc
 = 15.150
[in]

Column flange to base plate fillet weld size
w
 = from user input
 = 516
[in]

 
Weld stress from shear force
fv
 = Vy / L
 = 11.551
[kip/in]

Fillet Weld Strength Calc
Fillet weld leg size
w
 = 516
[in]
load angle θ
 = 0.0
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 2   for double fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.00
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 18.56
[kip/in]
AISC 15th  Eq 8-1


Base metal - column web
thickness t
 = 0.480
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - column web is in shear, shear rupture as per AISC 15th  Eq J4-4 is checked
AISC 15th  J2.4
Base metal shear rupture
Rn-b
 = 0.6 Fu t
 = 18.72
[kip/in]
AISC 15th  Eq J4-4


Double fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 18.559
[kip/in]
AISC 15th  Eq 9-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 13.919
[kip/in]

ratio
 = 0.83
 > fv
OK
 
 

  Base Plate - Load Case 2     P + Mx
    Pt =85.0 kip     Mx =0.0 kip-ft
Code=ACI 318-19

Result Summary
geometries & weld limitations = PASS
limit states max ratio 
0.82
PASS
 
 
Minimum Base Plate Thickness for Rigidity
ratio = 1.015 / 2.000
0.51
PASS
 
Please note this check is NOT a code required check. It's a check to meet the design assumption only
 
To ensure that base plate is rigid and anchor tensile forces are elastic linearly distributed, the base plate thickness ideally to be thicker than the 1/4 of overhangs beyond yield line in both directions as indicated on the right sketch.
 
User can turn this check On/Off in Anchor Bolt - Config & Setting by checking or unchecking the option of Min base plate thickness tp ≥ max of base plate overhangs m/4 and n/4
 


Column sect W18X86
d
 = 18.400
[in]
bf
 = 11.100
[in]

Base plate width & depth
B
 = 17.000
[in]
N
 = 21.000
[in]

 
AISC Design Guide 1 - 3.1.2 on Page 15
Base plate cantilever dimension
m
 = ( N - 0.95 d ) / 2
 = 1.760
[in]
n
 = ( B - 0.8 bf ) / 2
 = 4.060
[in]
 
Base plate thickness
tp
 = from user input
 = 2.000
[in]
 
Suggested minimum base plate thickness for rigidity
tmin
 = max ( m/4 , n/4 )
 = 1.015
[in]

ratio
 = 0.51
 < tp
OK
 
 
Base Plate Thickness Check
ratio = 0.972 / 2.000
0.49
PASS
 
Column sect W18X86
d
 = 18.400
[in]
bf
 = 11.100
[in]

Base plate width & depth
B
 = 17.000
[in]
N
 = 21.000
[in]

Pedestal width & depth
bc
 = 30.000
[in]
dc
 = 36.000
[in]

 
Base plate area
A1
 = B x N
 = 357.00
[in2]
Pedestal area
A2
 = bc x dc
 = 1080.0
[in2]
 
ACI 318-19 Table 14.5.6.1
k
 = min ( A2 / A1 , 2 )
 = 1.739


 
AISC Design Guide 1 - 3.1.2 on Page 15
Base plate cantilever dimension
m
 = ( N - 0.95 d ) / 2
 = 1.760
[in]
n
 = ( B - 0.8 bf ) / 2
 = 4.060
[in]
 
Base plate thickness
tp
 = from user input
 = 2.000
[in]


 
Factored tension force
Tu
 = from user input
 = 85.00
[kips]

 
No of anchors in tension
nt
 = anchor bolt pattern - 4A
 = 4

Anchor rod effective section area
Ase
 = 1.41
[in2]
futa
 = 125.0
[ksi]

Strength reduction factor
φts
 = 0.75
ACI 318-19 17.5.3(a)
Anchor rod tensile resistance
Tr
 = φts nt Ase futa
 = 528.75
[kips]
ACI 318-19 17.6.1.2
ratio
 = 0.16
 > Tu
OK
 
 
Anchor out-out spacing
s1
 = 10.000
[in]
s2
 = 10.000
[in]

Column sect W18X86
tw
 = 0.480
[in]

 
Anchor to column center distance
f
 = s1 / 2
 = 5.000
[in]
Anchor to column web center distance
f1
 = s2 / 2
 = 5.000
[in]
 
Factored tensile force in single anchor
Tb
 = Tu / nt
 = 21.25
[kips]
 




 
Base plate thickness
tp
 = from user input
 = 2.000
[in]

 
 
Bending to Column Web
AISC Design Guide 1
 
Moment lever arm
a
 = f1 - 0.5 tw
 = 4.760
[in]
Example 4.5 on Page 34
Moment to column flange
Mu
 = Tb x a
 = 8.43
[kip-ft]

Effective plate width
beff
 = 2 x a
 = 9.520
[in]
Example 4.5 on Page 35
 
Base plate strength & strength reduction factor
Fy
 = 50.0
[ksi]
φb
 = 0.90

 
Base plate required thickness
t2
 = (
4 Mu/beff φb Fy
)0.5
 = 0.972
[in]
Example 4.5 on Page 35
ratio
 = 0.49
 < tp
OK
 
 
Column Flange Fillet Weld Limitation
PASS
Min Fillet Weld Size


Thinner part joined thickness
t
 = 
 = 0.770
[in]

Min fillet weld size allowed
wmin
 = 
 = 0.313
[in]
AISC 15th  Table J2.4
Fillet weld size provided
w
 = 
 = 0.313
[in]

 ≥ wmin
OK
Min Fillet Weld Length


Fillet weld size provided
w
 = 
 = 0.313
[in]

Min fillet weld length allowed
Lmin
 = 4 x w
 = 1.250
[in]
AISC 15th  J2.2b
Min fillet weld length
L
 = 0.5 bfc - k1c
 = 4.487
[in]

 ≥ Lmin
OK
 
Column Web Fillet Weld Limitation
PASS
Min Fillet Weld Size


Thinner part joined thickness
t
 = 
 = 0.480
[in]

Min fillet weld size allowed
wmin
 = 
 = 0.188
[in]
AISC 15th  Table J2.4
Fillet weld size provided
w
 = 
 = 0.313
[in]

 ≥ wmin
OK
Min Fillet Weld Length


Fillet weld size provided
w
 = 
 = 0.313
[in]

Min fillet weld length allowed
Lmin
 = 4 x w
 = 1.250
[in]
AISC 15th  J2.2b
Min fillet weld length
L
 = db - 2 kb
 = 15.150
[in]

 ≥ Lmin
OK
 
 
W Shape Column Flange to Base Plate Weld
ratio = 2.86 / 20.88
0.14
PASS
Column section W18X86
dc
 = 18.400
[in]
bfc
 = 11.100
[in]

tfc
 = 0.770
[in]
k1c
 = 1.063
[in]



Forces on W shape flange weld
Pt
 = -85.00
[kips]  (T)
Vx
 = 0.00
[kips]

 
Flange fillet weld length-double fillet
L
 = ( bfc + bfc - 2k1c )/2 as double fillet
 = 10.037
[in]

Column flange to base plate fillet weld size
w
 = from user input
 = 516
[in]



W shape and flange area
A
 = 25.30
[in2]
Af
 = 8.55
[in2]

Tensile axial force taken by w shape one side flange
Pft
 = Pt Af / A
 = -28.72
[kips]

 
Weld tensile stress by Pft
ft
 = Pft / L
 = -2.86
[kip/in]

Weld shear stress-dbl fillet by Vx
fv
 = Vx / 2L
 = 0.00
[kip/in]

 
Weld stress combined - max
fmax
 = ( f2t + f2v )0.5
 = 2.861
[kip/in]
AISC 15th  Eq 8-11
Weld stress load angle
θ
 = tan-1 (
ft/fv
)
 = 90.0
[°]

 
Fillet Weld Strength Calc
Fillet weld leg size
w
 = 516
[in]
load angle θ
 = 90.0
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 2   for double fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.50
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 27.84
[kip/in]
AISC 15th  Eq 8-1


Base metal - column flange
thickness t
 = 0.770
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - column flange is in tension, tensile rupture as per AISC 15th  Eq J4-2 is checked
AISC 15th  J2.4
Base metal tensile rupture
Rn-b
 = Fu t
 = 50.05
[kip/in]
AISC 15th  Eq J4-2


Double fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 27.838
[kip/in]
AISC 15th  Eq 9-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 20.879
[kip/in]

ratio
 = 0.14
 > fmax
OK
 
W Shape Column Web to Base Plate Weld
ratio = 11.66 / 14.28
0.82
PASS
 
The moment Mx-x , My-y and Vx are all taken care by W shape flange weld , so W shape web to base plate weld only takes shear in strong axis direction Vy and part of axial tensile load Pw
 
Forces on column web weld
Pt
 = 85.00
[kips]  (T)
Vy
 = 175.00
[kips]

 
Column section W18X86
dc
 = 18.400
[in]
kc
 = 1.625
[in]

twc
 = 0.480
[in]

 
Fillet weld length - double fillet
L
 = dc - 2 kc
 = 15.150
[in]

W shape and web area
A
 = 25.30
[in2]
Aw
 = 7.27
[in2]

 
Tensile axial force taken by w shape web
Pw
 = Pt Aw / A
 = 24.43
[kips]

 
Column web to base plate fillet weld size
w
 = from user input
 = 516
[in]

 
Weld tensile stress from axial load
fa
 = Pw / L
 = 1.61
[kip/in]

Weld shear stress from shear load
fv
 = Vy / L
 = 11.55
[kip/in]

Weld stress combined - max
fmax
 = ( f2a + f2v )0.5
 = 11.663
[kip/in]
AISC 15th  Eq 8-11
Weld stress load angle
θ
 = tan-1 (
fa/fv
)
 = 7.9
[°]

Fillet Weld Strength Calc
Fillet weld leg size
w
 = 516
[in]
load angle θ
 = 7.9
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 2   for double fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.03
AISC 15th  Page 8-9
Fillet weld shear strength
Rn-w
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 19.04
[kip/in]
AISC 15th  Eq 8-1


Base metal - column web
thickness t
 = 0.480
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - column web is in tension, tensile rupture as per AISC 15th  Eq J4-2 is checked
AISC 15th  J2.4
Base metal tensile rupture
Rn-b
 = Fu t
 = 31.20
[kip/in]
AISC 15th  Eq J4-2


Double fillet linear shear strength
Rn
 = min ( Rn-w , Rn-b )
 = 19.036
[kip/in]
AISC 15th  Eq 9-2
Resistance factor-LRFD
φ
 = 0.75
AISC 15th  Eq 8-1
φ Rn
 = 
 = 14.277
[kip/in]

ratio
 = 0.82
 > fmax
OK