Result Summary - Overall
Anchorage Design
Code=ACI 318-19

Result Summary - Overall
geometries & weld limitations = PASS
limit states max ratio 
0.87
PASS
 
Anchor Bolt - LC 1     P + Vy + Mx
geometries & weld limitations = PASS
limit states max ratio 
0.87
PASS


 
Base Plate - LC 1     P + Mx
geometries & weld limitations = PASS
limit states max ratio 
0.86
PASS
 
 
 

  Sketch
Anchorage Design
Code=ACI 318-19

 
 
 
Anchor Forces Calculation
 


Anchor Tensile Force Calculation


 
User Input
 
 
 
Anchor edge distance
c1u
 = 9.500
[in]
c2u
 = 9.500
[in]
c3u
 = 9.500
[in]
c4u
 = 9.500
[in]
 
Anchor out-out spacing
s1u
 = 29.000
[in]
s2u
 = 29.000
[in]
 
Anchor embedment depth
hef
 = 60.000
[in]
 
Design Load - Load Case 1
 
Axial force
Axial P
 = 3.90
[kips]
  in compression
 
Shear forces
Vy
 = 1.50
[kips]
Vx
 = 0.00
[kips]
 
Moment forces
Mx
 = 79.00
[kip-ft]
My
 = 0.00
[kip-ft]
Anchor Layout Plan
 
Load Case 1 - Check on P + Vy + Mx
 
 
 
Anchor edge distance
c1
 = 9.500
[in]
c2
 = 9.500
[in]

c3
 = 9.500
[in]
c4
 = 9.500
[in]

 
Anchor out-out spacing
s1
 = 29.000
[in]
s2
 = 29.000
[in]

 
Anchor group load
Pu
 = 3.90
[kips]
Vu
 = 1.50
[kips]

Mu
 = 79.00
[kip-ft]









 
Max Allowed Concrete Pressure
Bolt circle dia & edge distance
Dbc
 = 29.000
[in]
e
 = 3.000
[in]

Base plate area
A1
 = 
π/4
( Dbc + 2 e )2
 = 962.11
[in2]
Bolt circle dia & edge distance
Dbc
 = 29.000
[in]
c
 = 9.500
[in]

Base plate area
A2
 = 
π/4
( Dbc + 2 c )2
 = 1809.6
[in2]
 
 
ACI 318-19 Table 14.5.6.1
k
 = min ( A2 / A1 , 2 )
 = 1.371


Column sect Custom Sect
d
 = 18.000
[in]
bf
 = 18.000
[in]

 
AISC Design Guide 1 - 3.1.2 on Page 15
Base plate cantilever dimension
m
 = ( N - 0.8 d ) / 2
 = 9.300
[in]
n
 = ( B - 0.8 bf ) / 2
 = 10.300
[in]





 


ACI 318-19
Concrete strength & strength reduction factor
fc
 = 4.0
[ksi]
φc
 = 0.65
Table 21.2.1 (d)
AISC Design Guide 1
Pedestal max bearing stress
fp(max)
 = φc k 0.85 fc
 = 3.031
[ksi]
3.1.1 on Page 14


 
Factored forces on base plate
Pu
 = 3.90
[kips]
Mu
 = 79.00
[kip-ft]

Eccentricity
e
 = Mu / Pu
 = 243.077
[in]

 


Calculate Circular Bolt Pattern Critical Eccentricity ecrit
Refer to sketch on the right, max allowed ecc when no tensile forces mobilized in anchors
is the ecc when
1) Max bearing stress fp(max) is reached so that Y reaches the min and e reaches the max
2) Axial compression Pu equals to bearing stress reaction resultant Pu = fp(max) A
    as there is no anchor tension involved in the vertical forces equilibrium
 
Axial compression force & max allowed stress under base plate
Pu
 = 3.90
[kips]
fp(max)
 = 3.031
[ksi]

 
Base plate radius and stress block angle when Y is reached
R
 = 17.500
[in]
α
 = 10.170

Stress block area
A
 = 
R2/2
( 2α - sin(2α))
 = 1.13
[in2]
Stress block length at angle of α
Y
 = calc from angle α above
 = 0.275
[in]
 
Max allowed ecc when no anchor is in tensin
e
 = 
4R sin3α/3 (2α - sin(2α))
 = 17.335
[in]
Critical eccentricity
ecrit
 = e value calculated above
 = 17.335
[in]


 
when e > ecrit  ,   large moment case applied
Step 3 on Page 27
 
 
Anchor Tensile Force Calc - Group Anchor Subject to Moment


 
Design Basis and Assumptions
1. Assume base plate is rigid and anchor tensile forces are elastic linearly distributed as shown on the right.
2. The concrete bearing stress is assumed to be uniformly distributed as per AISC Design Guide 1 section 3.3.1
User can select the option of base plate thickness tp ≥ (max of base plate overhangs m or n) / 4   in
Anchor Bolt - Config & Setting to ensure that base plate has adequate rigidity to match above assumptions.
 
Anchor Bolt Dimensions
Circular anchor bolt circle dia & base plate dia
Dbc
 = 29.000
[in]
Dbp
 = 35.000
[in]

Column sect Custom Sect
OD
 = 18.000
[in]

 
Loads on Anchor Group
Anchor group load
Pu
 = 3.90
[kips]  (C)
Mu
 = 79.00
[kip-ft]

 
Along Anchor Bolt Line - Single Anchor Tensile Ti & No of Anchor Bolt ni
Anchor bolt line - moment arm
dm1
 = 21.557
[in]
dm2
 = 9.000
[in]

 
Bolt line 1 - single anchor T1
T1
 = 12.20
[kips]
n1
 = 2

Bolt line 2 - single anchor T2
T2
 = 5.09
[kips]
n2
 = 2

 
Sum of anchors tensile force
Tu
 = n1 T1 + n2 T2
 = 34.58
[kips]

No of anchors in anchor group resisting tension
nt
 = n1 + n2
 = 4

 
Resistance moment by anchor tensile
Mra
 = n1 T1 dm1 + n2 T2 dm2
 = 51.46
[kip-ft]

 
Moment by Concrete Pressure Reaction
 
Take the moment of concrtete pressure resultant Pcon  to column flange/base plate intersect point A as
shown on above sketch on the right
 
Pedestal max bearing stress
fp(max)
 = φc k 0.85 fc
 = 3.031
[ksi]
AISC DG1 3.1.1
 
Base plate radius and column dia
R
 = 17.500
[in]
OD
 = 18.000
[in]

Stress block length and angle at Y
Y
 = 1.373
[in]
α
 = 22.850

 
Conc stress block area
A
 = 
R2/2
( 2α - sin(2α))
 = 12.54
[in2]

 
Conc stress block centroid to circular base plate center distance
e
 = 
4R sin3α/3 (2α - sin(2α))
 = 16.678
[in]

Conc stress resultant to point A moment arm
dc
 = e - 0.5 OD
 = 7.678
[in]

 
Concrete pressure stress resultant
Pcon
 = fp(max) A
 = 38.01
[kips]

Resistance moment by concrete stress resultant reaction
Mrc
 = Pcon x dc
 = 24.32
[kip-ft]

 


Below two sections are for verification purpose only. We want to verify that the anchor tensile forces and
concrete pressure block length Y shown above make the base plate achieving force equilibrium
 
Verify Vertical Force Equilibrium
 
Tensile anchors reaction on base plate - downward
Par
 = n1 T1 + n2 T2
 = 34.58
[kips]

Base plate compressive load- downward
Pu
 = from user load input
 = 3.90
[kips]

Sum of downward forces on base plate
Pdn
 = Par + Pu
 = 38.48
[kips]



Concrete pressure reaction on base plate - upward
Pcon
 = qmax Y
 = 38.01
[kips]

 
Sum of upward forces on base plate
Pup
 = Pcon
 = 38.01
[kips]

 
Conclusion : the vertical forces equilibrium is achieved


 
Summation of Moments Taken About Point A
 
Resistance moment by tensile anchors downward reaction forces
Mra
 = n1 T1 dm1 + n2 T2 dm2
 = 51.46
[kip-ft]

 
Resistance moment by concrete pressure reaction force
Mrc
 = Pcon x dc
 = 24.32
[kip-ft]

 
Sum of resistance moment
 = Mra + Mrc
 = 75.78
[kip-ft]



Load on base plate
Pu
 = 3.90
[kips]
Mu
 = 79.00
[kip-ft]

Column sect Custom Sect
d
 = 18.000
[in]

 
Sum of moments from base plate loads taken to point A
 = Mu - Pu x 0.5 OD
 = 76.07
[kip-ft]

 
Conclusion : the summation of moments taken about point A equals to zero
 


 
Load Case 1 - P + Vy + Mx   Reduced hef  Calc
 
 
Anchor Embedment Depth hef  Adjustment


 
Anchor embedment depth hef  - If anchors are located less than 1.5hef  from three or more edges,
hef needs to be shortened as per ACI 318-19  17.6.2.1.2
ACI 318-19 17.6.2.1.2
 


Anchor group edge distances are re-calculated base on tensile anchors in the group as not all anchors mobilized tensile force under the moment
 
Anchor Group Dimensions
Anchor bolt circle dia & pedestal dia
Dbc
 = 29.000
[in]
Dpd
 = 48.000
[in]

 
Anchor spacing
s1
 = 14.500
[in]
s2
 = 14.500
[in]

Anchor edge distance
c1
 = 19.125
[in]
c2
 = 9.500
[in]

c3
 = 10.321
[in]
c4
 = 9.500
[in]

 
Max anchor spacing within the group used in effective anchor embedment depth calc
 
Max anchor spacing within the tensile anchors group
s1max
 = 14.500
[in]
s2max
 = 29.000
[in]

 



 
Anchor embedment depth - from user input
hef
 = from user input
 = 60.000
[in]

 
Anchors are located less than 1.5hef from three or more edges
 = Yes

 
Max of edge distances not exceeding 1.5hef
ca,max
 = 
 = 19.125
[in]

 
Max spacing between anchors within the group
s
 = 
 = 29.000
[in]

 
Anchor embedment depth - adjusted
hef
 = max (ca,max /1.5 , s /3)
 = 12.750
[in]
ACI 318-19 17.6.2.1.2
 
Concrete Breakout - Tensile Anchors Eccentricity Factor - Ψec,N Calc
 
 
Modification factor for anchor groups loaded eccentrically in tension as per ACI 318-19 17.6.2.3.1
 
Along Anchor Bolt Line - Single Anchor Tensile Ti & No of Anchor Bolt ni
 
See calculation above for sketch showing the notations
of T1 ~ T2 and sb1 values shown below
 
Bolt line 1 - single anchor T1
T1
 = 12.20
[kips]
n1
 = 2

Bolt line 2 - single anchor T2
T2
 = 5.09
[kips]
n2
 = 2

 
Anchor distance to bolt line-1
de2
 = 12.557
[in]

 
Eccentricity eN of Resultant Anchor Tensile Force
 
Take bolt line-1 as a rotating point, take moment to bolt line-1
 
Distance from anchors tensile resultant to bolt line-1
d1
 = 
n2 T2 de2/n1 T1 + n2 T2
 = 3.698
[in]
 
Distance from anchors group centroid to bolt line-1
d2
 = 
n2 de2/n1 + n2
 = 6.279
[in]
 
Ecc dist between anchor tensile resultant and anchor group CG
eN
 = d2 - d1
 = 2.580
[in]
 
 
Refer to calc above for details on reduced hef  calc as per ACI 318-19  17.6.2.1.2
 
Anchor embedment depth
hef
 = from calc above
 = 12.750
[in]
 
 
ACI 318-19 Eq 17.6.2.3.1
Eccentricity modification factor
Ψec,N
 = 
1/(1 + eN  / 1.5hef )
  ≤ 1
 = 0.881
 
ACI 318-19 Fig. R17.6.2.3.1
Definition of eN for an anchor group

 
 
 
 

  Anchor Bolt - Load Case 1     P + Vy + Mx
    Pc =3.9 kip     Vy =1.5 kip     Mx =79.0 kip-ft
Code=ACI 318-19

Result Summary
geometries & weld limitations = PASS
limit states max ratio 
0.87
PASS
 
 
Min Anchor Dimensions Check Per PIP STE05121 - Optional
PASS
 
Min Anchor Dimensions Check
 
Check min anchor dimensions as per PIP STE05121 Application of ASCE Anchorage Design for Petrochemical Facilities - 2018   Table 1 as shown below.
 
This check is NOT a code requirement.   User can turn this check On/Off by changing setting at Anchor Bolt --> Anchor Bolt - Config & Setting --> Check min anchor spacing and edge distance as per PIP STE05121 Table 1
 
Anchor Rod Inputs


Anchor rod grade and dia
grade
 = F1554 Gr36
da
 = 2.000
[in]

 
Min Anchor Edge Distance


 
Anchor edge distance
c1
 = 19.125
[in]
c2
 = 9.500
[in]

c3
 = 10.321
[in]
c4
 = 9.500
[in]

 
Min anchor edge distance required
cmin
 = from PIP STE05121 Table 1 below
 = 8.000
[in]
PIP STE05121 Table 1
 
Min anchor edge distance
c
 = min(c1 , c2 , c3 , c4 )
 = 9.500
[in]

 ≥ cmin
OK
Min Anchor Spacing


 
Min anchor spacing required
smin
 = from PIP STE05121 Table 1 below
 = 8.000
[in]
PIP STE05121 Table 1
 
Anchor bolt pattern
 = from user input
 = C1

 
Min anchor spacing
s
 = from user input
 = 14.500
[in]

 ≥ smin
OK
Min Anchor Embedment Depth


 
Min anchor embedment required
hmin
 = from PIP STE05121 Table 1 below
 = 24.000
[in]
PIP STE05121 Table 1
 
Min anchor embedment depth
hef
 = from user input
 = 60.000
[in]

 ≥ hmin
OK
 


 
Table 1 from PIP STE05121 Application of ASCE Anchorage Design for Petrochemical Facilities - 2018
 

 
 
 
Anchor Rod Tensile Resistance
ratio = 12.2 / 108.8
0.11
PASS
 
Anchor rod effective section area
Ase
 = 2.50
[in2]
futa
 = 58.0
[ksi]

Anchor rod steel strength in tension
Nsa
 = Ase futa
 = 145.00
[kips]
ACI 318-19 17.6.1.2
 


 
Max Single Anchor Tensile Force
 
 
Refer to Anchor Forces Calculation section above for the detail calculation on how to ge the max single anchor tensile force as shwon below
 
Max single anchor tensile force
T
 = from Anchor Forces Calculation above
 = 12.20
[kips]



 
Strength reduction factor
φts
 = 0.75
ACI 318-19 17.5.3(a)
φts Nsa
 = 0.75 x 145.00
 = 108.75
[kips]

ratio
 = 0.11
 > T
OK
 
Anchor Concrete Tensile Breakout Resistance
ratio = 34.6 / 39.8
0.87
PASS
 
Anchor embedment depth-adjusted
hef
 = from Anchor Forces Calculation above
 = 12.750
[in]

Conc strength & lightweight conc factor
fc
 = 4.0
[ksi]
λ
 = 1.0
ACI 318-19 17.2.4.1
 
Single anchor concrete breakout strength
Nb
 = 24λ fc h1.5ef If hef < 11" or hef > 25"
 = 70.42
[kips]
ACI 318-19 17.6.2.2.1
16λ fc h5/3ef   If 11" ≤ hef  ≤ 25"
ACI 318-19 17.6.2.2.3
 


 
Circular Bolt Pattern Tensile Anchor Breakout ANC Calculation
 
Refer to Anchor Forces Calculation for details of circular pattern anchor group anchor spacings and edge distances calculation
 
Anchor bolt circle dia & pedestal dia
Dbc
 = 29.000
[in]
Dpd
 = 48.000
[in]

 
Anchor spacing
s1
 = 14.500
[in]
s2
 = 14.500
[in]

Anchor edge distance
c1
 = 19.125
[in]
c2
 = 9.500
[in]

c3
 = 10.321
[in]
c4
 = 9.500
[in]

 
Anchor embedment depth-adjusted
hef
 = from calc above
 = 12.750
[in]
 
Anchor group projected conc failure area
ANC1
 = 
 = 1472.2
[in2]


 
ANco
 = 9 h2ef
 = 1463.1
[in2]
ACI 318-19 17.6.2.1.4
 
No of anchors in the group resisting tension
nt
 = from Anchor Forces Calculation above
 = 4

ANc
 = min( ANc1 , nt ANco )
 = 1472.2
[in2]
ACI 318-19 17.6.2.1.1


Eccentricity modification factor
Ψec,N
 = from Anchor Forces Calculation above
 = 0.881
ACI 318-19 17.6.2.3.1
 
Min edge distance
cmin
 = 
 = 9.500
[in]

Edge modification factor
Ψed,N
 = min[0.7 +
0.3cmin/1.5hef
, 1.0]
 = 0.849
ACI 318-19 17.6.2.4.1
Conc cracking modification factor
Ψc,N
 = 
 = 1.00
ACI 318-19 17.6.2.5.1
Conc splitting modification factor
Ψcp,N
 = 
 = 1.00
ACI 318-19 17.6.2.6.1
Concrete breakout resistance
Ncbg
 = 
ANc/ANco
Ψec,N Ψed,N Ψc,N Ψcp,N Nb
 = 53.01
[kips]
ACI 318-19 17.6.2.1b
 
Sum of anchors tensile force in anchor group
Nu
 = from Anchor Forces Calculation above
 = 34.58
[kips]

 
Strength reduction factor
φtc
 = 0.75
  supplementary reinft present
ACI 318-19 17.5.3(b)
φtc Ncbg
 = 0.75 x 53.01
 = 39.75
[kips]

 
Seismic design strength reduction
 = x 1.0   not applicable
 = 39.75
[kips]
ACI 318-19 17.10.5.4(b)
 
ratio
 = 0.87
 > Nu
OK
 
Anchor Pullout Resistance
ratio = 12.2 / 119.1
0.10
PASS
 
Anchor head net bearing area & conc strength
Abrg
 = 5.32
[in2]
fc
 = 4.0
[ksi]

Single bolt pullout resistance
Np
 = 8 Abrg fc
 = 170.11
[kips]
ACI 318-19 17.6.3.2.2a
Pullout cracking factor
ΨcP
 = for cracked concrete
 = 1.00
ACI 318-19 17.6.3.3.1(b)
 


 
Max Single Anchor Tensile Force
 
 
Refer to Anchor Forces Calculation section above for the detail calculation on how to ge the max single anchor tensile force as shwon below
 
Max single anchor tensile force
T
 = from Anchor Forces Calculation above
 = 12.20
[kips]



 
Strength reduction factor
φtc
 = 0.70
 pullout strength is always Condition B
ACI 318-19 17.5.3(c)
φtc Npn
 = φtc ΨcP Np
 = 119.08
[kips]

 
Seismic design strength reduction
 = x 1.0   not applicable
 = 119.08
[kips]
ACI 318-19 17.10.5.4(c)
 
ratio
 = 0.10
 > T
OK
 
Anchor Side Blowout Resistance
ratio = 12.2 / 86.7
0.14
PASS
Anchor Inputs


Anchor edge distance
c1
 = 19.125
[in]
c2
 = 9.500
[in]

c3
 = 10.321
[in]
c4
 = 9.500
[in]

 
Anchor out-out spacing
s1
 = 14.500
[in]
s2
 = 14.500
[in]




 
Side Edges Along X-X Axis - Width Edges
 
Anchor edge distance in Y direction
ca1
 = min (c1 , c3 )
 = 10.321
[in]

Anchor embedment depth
hef
 = from user input
 = 60.000
[in]

 
Side blowout check is required on this edge or not
 = check if hef > 2.5 ca1
 = True
ACI 318-19 17.6.4.1
 
Side blowout check is required
ACI 318-19 17.6.4.1
 
Anchor out-out distance edges along X direction
s2
 = from user input
 = 14.500
[in]

Anchor number along X direction
nw
 = from user input
 = 2

 
Anchor head net bearing area & conc strength
Abrg
 = 5.32
[in2]
fc
 = 4.0
[ksi]

Lightweight conc modification factor
λ
 = 1.0
ACI 318-19 17.2.4.1
 
Single anchor side blowout capacity
Nsb
 = 160 ca1 Abrg λ fc
 = 240.80
[kips]
ACI 318-19 17.6.4.1
 
For multiple anchors along the edge, check if the anchor spacing is close enough so that side
blowout capacity shall be calculated as a group
ACI 318-19 17.6.4.2
 
 
Anchor spacing along X-X edges
sb
 = s2 / (nw - 1)
 = 14.500
[in]

 
Multiple tensile anchors space close and work as group or not
 = check if sb < 6 ca1
 = True
ACI 318-19 17.6.4.2
 
Multiple anchors group factor
 = 1 +
s2/6ca1
 = 1.23
ACI 318-19 17.6.4.2
 
Group anchor side blowout capacity
Nsbg
 = (1 +
s2/6ca1
) Nsb
 = 297.19
[kips]

 


Refer to Anchor Forces Calculation section above for the detail calculation on how to ge the max single anchor tensile force as shwon below
 
Max single anchor tensile force & no of anchors along blowout edge
T1
 = 12.20
[kips]
n1
 = 2

 
Tensile force - anchors along potential blowout edge
Tw
 = n1 T1
 = 24.39
[kips]



 
Strength reduction factor
φtc
 = 0.75
  supplementary reinft present
ACI 318-19 17.5.3(b)
φtc Nsbg
 = 0.75 x 297.19
 = 222.89
[kips]

 
Seismic design strength reduction
 = x 1.0   not applicable
 = 222.89
[kips]
ACI 318-19 17.10.5.4(d)
 
ratio
 = 0.11
 > Tw
OK
 
When there are tensile anchors in the group which are not located on blowout edge, we need to use edge
anchors capacity above to work out anchor group tensile capacity
 
Group anchor no & no of anchor along blowout edge
nt
 = 4
nbw
 = 2

 
Group anchor tensile side blowout capacity
 = 222.89
nt/nbw
 = 445.78
[kips]

 
Side Edges Along Y-Y Axis - Depth Edges
 
Anchor edge distance in X direction
ca2
 = min (c2 , c4 )
 = 9.500
[in]

Anchor embedment depth
hef
 = from user input
 = 60.000
[in]

 
Side blowout check is required on this edge or not
 = check if hef > 2.5 ca2
 = True
ACI 318-19 17.6.4.1
 
Side blowout check is required
ACI 318-19 17.6.4.1
 
Anchor head net bearing area & conc strength
Abrg
 = 5.32
[in2]
fc
 = 4.0
[ksi]

Lightweight conc modification factor
λ
 = 1.0
ACI 318-19 17.2.4.1
 
Single anchor side blowout capacity
Nsb
 = 160 ca2 Abrg λ fc
 = 221.65
[kips]
ACI 318-19 17.6.4.1
 
 


 
When only single anchor in a row of multiple anchors mobilizes tensile for side blowout check ,
this single anchor has an increased edge distance c3 by adding s1
 
Anchor edge distance - after c3 been adjusted
c1
 = 10.321
[in]
c3
 = 33.625
[in]



 
When amchor edge distance c1 , c3 are small, when c1 or c3 ≤ 3ca2  , anchor Nsb  sball be multiplied
by a reduction factor
ACI 318-19 17.6.4.1.1
 
Single anchor side blowout capacity
Nsb
 = from above calculation
 = 221.65
[kips]

Anchor edge distance in X direction
ca2
 = min (c2 , c4 )
 = 9.500
[in]

 
Check If c1 ≤ 3ca2
Anchor edge distance
c1
 = from user input
 = 10.321
[in]

Edge anchor on c1 edge
 = check if c1 ≤ 3 ca2
 = True
ACI 318-19 17.6.4.1.1
Edge anchor side blowout capacity
Nsb1
 = Nsb (1 + c1 / ca2 ) / 4
 = 115.61
[kips]

where 1.0 ≤ c1 / ca2 ≤ 3.0
ACI 318-19 17.6.4.1.1
 
Check If c3 ≤ 3ca2
Anchor edge distance
c3
 = from user input
 = 33.625
[in]

Edge anchor on c3 edge
 = check if c3 ≤ 3 ca2
 = False
ACI 318-19 17.6.4.1.1
Edge anchor side blowout capacity
Nsb3
 = Nsb
 = 221.65
[kips]

 


The anchor tensile force is caused by moment, anchors along the outermost bolt line has the max tensile load T1
Side blowout along depth edge is checked against single corner anchor only which mobilizes max tensile load T1 ,
so number of anchor along potential side blowout edge below is set as n = 1
 
Total number of anchors along potential side blowout edge
n
 = from user input
 = 1

 
Single anchor side blowout capacity along side blowout edge
Nsb
 = min (Nsb1 , Nsb3 )
 = 115.61
[kips]

 


Refer to Anchor Forces Calculation section above for the detail calculation on how to ge the max single anchor tensile force as shwon below
 
Tensile force - anchor along potential blowout edge
Td
 = T1 from Anchor Forces Calculation
 = 12.20
[kips]



 
Strength reduction factor
φtc
 = 0.75
  supplementary reinft present
ACI 318-19 17.5.3(b)
φtc Nsbg
 = 0.75 x 115.61
 = 86.71
[kips]

 
Seismic design strength reduction
 = x 1.0   not applicable
 = 86.71
[kips]
ACI 318-19 17.10.5.4(d)
 
ratio
 = 0.14
 > Td
OK
 
When there are tensile anchors in the group which are not located on blowout edge, we need to use edge
anchors capacity above to work out anchor group tensile capacity
 
Group anchor no & no of anchor along blowout edge
nt
 = 4
nbd
 = 1

 
Group anchor tensile side blowout capacity
 = 86.71
nt/nbd
 = 346.84
[kips]

 
Corner Single Anchor Side Blowout
 
 
Check on corner single anchor side blowout capacity considering the corner effect factor
as per ACI 318-19 17.6.4.1.1
ACI 318-19 17.6.4.1.1
 
Anchor edge distance
ca1
 = min (c1 , c3 )
 = 10.321
[in]

ca2
 = min (c2 , c4 )
 = 9.500
[in]

 
Consider corner effect or not
 = check if ca2 < 3 ca1
 = True
ACI 318-19 17.6.4.1.1
Single anchor side blowout capacity
Nsb1
 = (1 +
ca2/ca1
) /4 x Nsb
 = 120.40
[kips]

 


Refer to Anchor Forces Calculation section above for the detail calculation on how to ge the max single anchor tensile force as shwon below
 
Max single anchor tensile force
T1
 = from user load input
 = 12.20
[kips]



 
Strength reduction factor
φtc
 = 0.75
  supplementary reinft present
ACI 318-19 17.5.3(b)
φtc Nsb
 = 0.75 x 120.40
 = 90.30
[kips]

 
Seismic design strength reduction
 = x 1.0   not applicable
 = 90.30
[kips]
ACI 318-19 17.10.5.4(d)
 
ratio
 = 0.14
 > T1
OK
 
 
Anchor Group Governing Tensile Resistance
 
Anchor group governing tensile resistance is the minimum value of the resistance values in
the following limit states
 
No of anchors in anchor group
resisting tension
nt
 = from Anchor Forces Calculation above
 = 4

 
Anchor rod tensile resistance
nt φ Nsa
 = 4 x 108.75
 = 435.00
[kips]

 
Anchor concrete breakout resistance
φ Ncbg
 = from anchor conc breakout calc above
 = 39.75
[kips]

 
Anchor pullout resistance
nt φ Npm
 = 4 x 119.08
 = 476.31
[kips]

 
Anchor side blowout resistance
φ Nsbg
 = from anchor side blowout calc above
 = 346.84
[kips]

 
Anchor group governing tensile resistance
φ Nn
 = minimum of above values
 = 39.75
[kips]

 
 
Anchor Rod Shear Resistance
ratio = 1.5 / 135.7
0.01
PASS
 
Shear load on anchor group
Vu
 = from user load input
 = 1.50
[kips]

 
Anchor rod effective section area
Ase
 = 2.50
[in2]
futa
 = 58.0
[ksi]

No of anchors in the group resisting shear
ns
 = from user input
 = 3

 
Anchor rod steel strength in tension
Vsa
 = ns 0.6 Ase futa
 = 261.00
[kips]
ACI 318-19 17.7.1.2b
 
Strength reduction factor
φvs
 = 0.65
ACI 318-19 17.5.3(a)
φvs Vsa
 = 
 = 169.65
[kips]

 
Reduction due to built-up grout pad
 = x 0.80   applicable
 = 135.72
[kips]
ACI 318-19 17.7.1.2.1
 
ratio
 = 0.01
 > Vu
OK
 
Concrete Shear Breakout Resistance - Perpendicular To Edge
ratio = 1.5 / 22.0
0.07
PASS
 
For front anchors shear breakout, the shear force checked against with can be 0.5 x Vu or 1.0 x Vu , depending on
whether base plate has oversized hole or not
 
Mode 1 Failure cone at front anchors, strength check against 0.5 x Vu
Mode 3 Failure cone at front anchors, strength check against 1.0 x Vu , applicable when base plate has oversized holes
 
Mode 3  Oversized hole option is chosen, strength check against 1.0 x Vu
              User can go to Anchor Bolt - Config & Setting to change the option
 

 


 
 
Anchor edge distance
c1
 = 11.443
[in]
c2
 = 13.203
[in]

c3
 = 10.321
[in]
c4
 = 13.203
[in]

 
Anchor out-out spacing
s1
 = 25.115
[in]
s2
 = 14.500
[in]

 








 
Anchor edge distance
c1
 = from user input
 = 11.443
[in]

Limiting ca1 when anchors are influenced by 3 or more edges
 = No
ACI 318-19 17.7.2.1.2
Anchor edge distance - adjusted
c1
 = ca1 needs NOT to be adjusted
 = 11.443
[in]

c2
 = 13.203
[in]
1.5c1
 = 17.164
[in]

AVc1
 = [min(c2 ,1.5c1 )+ s2 +min(c4 ,1.5c1 )] x
 = 702.10
[in2]
ACI 318-19
Fig. R17.7.2.1b
min(1.5c1 , ha )

 
Projected area of single anchor failure surface
AVco
 = 4.5 c21
 = 589.20
[in2]
ACI 318-19 17.7.2.1.3
 
No of front anchors resisting shear
ns
 = 
 = 2

Projected area of anchor group failure surface
AVc
 = min( AVc1 , ns AVco )
 = 702.10
[in2]
ACI 318-19 17.7.2.1.1


Anchor embedment & diameter
hef
 = 60.000
[in]
da
 = 2.000
[in]

Load-bearing length of anchor for shear
le
 = min( 8da , hef )
 = 16.000
[in]
ACI 318-19 17.7.2.2.1
Anchor edge distance & diameter
ca1
 = 11.443
[in]
da
 = 2.000
[in]

Conc strength & lightweight factor
fc
 = 4.0
[ksi]
λ
 = 1.0

 
Vb1
 = 7(
le/da
)0.2da λ fc c1.5a1
 = 36.73
[kips]
ACI 318-19 17.7.2.2.1a
Vb2
 = 9 λ fc c1.5a1
 = 22.03
[kips]
ACI 318-19 17.7.2.2.1b
 
Single anchor shear breakout strength
Vb
 = min( Vb1 , Vb2 )
 = 22.03
[kips]
ACI 318-19 17.7.2.2.1


Eccentricity modification factor
Ψec,V
 = shear acts through center of group
 = 1.00
ACI 318-19 17.7.2.3.1
Edge modification factor
Ψed,V
 = min[ (0.7 + 0.3 c2 / 1.5c1 ), 1.0 ]
 = 0.931
ACI 318-19 17.7.2.4.1
Conc cracking modification factor
Ψc,V
 = 
 = 1.20
ACI 318-19 17.7.2.5.1
 
Anchor edge distance & conc thickness
ca1
 = 11.443
[in]
ha
 = 216.000
[in]

Conc breakout thickness factor
Ψh,V
 = (
1.5ca1/ha
)0.5 ≥ 1.0
 = 1.00
ACI 318-19 17.7.2.6.1


Strength reduction factor
φvc
 = 0.75
  supplementary reinft present
ACI 318-19 17.5.3(b)
Concrete breakout resistance
Vcbg
 = φvc
AVc/AVco
Ψec,V Ψed,V Ψc,V Ψh,V Vb
 = 21.99
[kips]
ACI 318-19 17.7.2.1b
 
Mode 3 is used for checking
Vcbg1
 = 1.0 x Vcbg
 = 21.99
[kips]

 
Mode 2 Failure cone at back anchors
 

 


Anchor edge distance
ca1
 = c1 + s1
 = 36.557
[in]

Limiting ca1 when anchors are influenced by 3 or more edges
 = No
ACI 318-19 17.7.2.1.2
Anchor edge distance - adjusted
ca1
 = ca1 needs NOT to be adjusted
 = 36.557
[in]

c2
 = 13.203
[in]
1.5c1
 = 54.836
[in]

AVc1
 = [min(c2 ,1.5c1 )+ s2 +min(c4 ,1.5c1 )] x
 = 2243.1
[in2]
ACI 318-19
Fig. R17.7.2.1b
min(1.5c1 , ha )

 
Projected area of single anchor failure surface
AVco
 = 4.5 c21
 = 6014.0
[in2]
ACI 318-19 17.7.2.1.3
 
No of back anchors resisting shear
ns
 = 
 = 2

Projected area of anchor group failure surface
AVc
 = min( AVc1 , ns AVco )
 = 2243.1
[in2]
ACI 318-19 17.7.2.1.1


Anchor embedment & diameter
hef
 = 60.000
[in]
da
 = 2.000
[in]

Load-bearing length of anchor for shear
le
 = min( 8da , hef )
 = 16.000
[in]
ACI 318-19 17.7.2.2.1
Anchor edge distance & diameter
ca1
 = 36.557
[in]
da
 = 2.000
[in]

Conc strength & lightweight factor
fc
 = 4.0
[ksi]
λ
 = 1.0

 
Vb1
 = 7(
le/da
)0.2da λ fc c1.5a1
 = 209.76
[kips]
ACI 318-19 17.7.2.2.1a
Vb2
 = 9 λ fc c1.5a1
 = 125.82
[kips]
ACI 318-19 17.7.2.2.1b
 
Single anchor shear breakout strength
Vb
 = min( Vb1 , Vb2 )
 = 125.82
[kips]
ACI 318-19 17.7.2.2.1


Eccentricity modification factor
Ψec,V
 = shear acts through center of group
 = 1.00
ACI 318-19 17.7.2.3.1
Edge modification factor
Ψed,V
 = min[ (0.7 + 0.3 c2 / 1.5c1 ), 1.0 ]
 = 0.772
ACI 318-19 17.7.2.4.1
Conc cracking modification factor
Ψc,V
 = 
 = 1.20
ACI 318-19 17.7.2.5.1
 
Anchor edge distance & conc thickness
ca1
 = 36.557
[in]
ha
 = 216.000
[in]

Conc breakout thickness factor
Ψh,V
 = (
1.5ca1/ha
)0.5 ≥ 1.0
 = 1.00
ACI 318-19 17.7.2.6.1


Strength reduction factor
φvc
 = 0.75
  supplementary reinft present
ACI 318-19 17.5.3(b)
Concrete breakout resistance
Vcbg2
 = φvc
AVc/AVco
Ψec,V Ψed,V Ψc,V Ψh,V Vb
 = 32.61
[kips]
ACI 318-19 17.7.2.1b
 


 
Shear force in demand
Vu
 = from user input
 = 1.50
[kips]

 
Min shear breakout resistance
φvc Vcbg
 = min (Vcbg1 , Vcbg2 )
 = 21.99
[kips]

 
ratio
 = 0.07
 > Vu
OK
 
Concrete Shear Breakout Resistance - Parallel To Edge
ratio = 1.5 / 51.7
0.03
PASS
 

 
The case of shear parallel to an edge is shown in ACI 318-19 Fig. R17.7.2.1c.
The maximum shear that can be applied parallel to the edge, V||, as governed
by concrete breakout, is twice the maximum shear that can be applied
perpendicular to the edge, V⊥.
 


Anchor edge distance
c1
 = 19.125
[in]
c2
 = 9.500
[in]

c3
 = 10.321
[in]
c4
 = 9.500
[in]

Anchor out-out spacing
s1
 = 14.500
[in]
s2
 = 14.500
[in]

 
ACI 318-19 Fig. R17.7.2.1c
shear force parallel to an edge

 


 
Mode 1 Shear taken evenly by all anchor bolts, strength check against 0.5 x Vu
 
Anchor edge distance
ca1
 = min( c2 , c4 )
 = 9.500
[in]

Limiting ca1 when anchors are influenced by 3 or more edges
 = No
ACI 318-19 17.7.2.1.2
Anchor edge distance - adjusted
ca1
 = ca1 needs NOT to be adjusted
 = 9.500
[in]

c1
 = 19.125
[in]
c3
 = 10.321
[in]

s1
 = 14.500
[in]
1.5ca1
 = 14.250
[in]

AVc1
 = [min(c1 ,1.5ca1 )+s1+min(c3 ,1.5ca1)]x
 = 556.76
[in2]
ACI 318-19
Fig. R17.7.2.1b
min(1.5ca1 , ha )

 
Projected area of single anchor failure surface
AVco
 = 4.5 c2a1
 = 406.13
[in2]
ACI 318-19 17.7.2.1.3
 
No of front anchors resisting shear
nbd
 = 
 = 2

Projected area of anchor group failure surface
AVc
 = min( AVc1 , nbd AVco )
 = 556.76
[in2]
ACI 318-19 17.7.2.1.1


Anchor embedment & diameter
hef
 = 60.000
[in]
da
 = 2.000
[in]

Load-bearing length of anchor for shear
le
 = min( 8da , hef )
 = 16.000
[in]
ACI 318-19 17.7.2.2.1
Anchor edge distance & diameter
ca1
 = 9.500
[in]
da
 = 2.000
[in]

Conc strength & lightweight factor
fc
 = 4.0
[ksi]
λ
 = 1.0

 
Vb1
 = 7(
le/da
)0.2da λ fc c1.5a1
 = 27.79
[kips]
ACI 318-19 17.7.2.2.1a
Vb2
 = 9 λ fc c1.5a1
 = 16.67
[kips]
ACI 318-19 17.7.2.2.1b
 
Single anchor shear breakout strength
Vb
 = min( Vb1 , Vb2 )
 = 16.67
[kips]
ACI 318-19 17.7.2.2.1


Eccentricity modification factor
Ψec,V
 = shear acts through center of group
 = 1.00
ACI 318-19 17.7.2.3.1
Edge modification factor
Ψed,V
 = 1.0 for shear parallel to an edge case
 = 1.000
ACI 318-19
Fig. R17.7.2.1b Case 2
Conc cracking modification factor
Ψc,V
 = 
 = 1.20
ACI 318-19 17.7.2.5.1
 
Anchor edge distance & conc thickness
ca1
 = 9.500
[in]
ha
 = 216.000
[in]

Conc breakout thickness factor
Ψh,V
 = (
1.5ca1/ha
)0.5 ≥ 1.0
 = 1.00
ACI 318-19 17.7.2.6.1


 
For Mode 1  Vcbg-p1 is supposed to check against 0.5Vu  ,  in terms of utilization ratio  
0.5Vu/Vcbg-p1
  = 
Vu/2Vcbg-p1
 
Strength reduction factor
φvc
 = 0.75
  supplementary reinft present
ACI 318-19 17.5.3(b)
Concrete breakout resistance
Vcbg-p1
 = 2x φvc
AVc/AVco
Ψec,V Ψed,V Ψc,V Ψh,V Vb
 = 41.13
[kips]
ACI 318-19 17.7.2.1b
 


 
Mode 2 Shear taken evenly by back anchor bolts, strength check against 0.5 x Vu
 
Anchor edge distance
ca1
 = min( c2 , c4 )
 = 9.500
[in]

Limiting ca1 when anchors are influenced by 3 or more edges
 = No
ACI 318-19 17.7.2.1.2
Anchor edge distance - adjusted
ca1
 = ca1 needs NOT to be adjusted
 = 9.500
[in]

c1
 = 19.125
[in]
c3
 = 10.321
[in]

s1
 = 14.500
[in]
1.5ca1
 = 14.250
[in]

AVc1
 = [min(s1+c1 ,1.5ca1 )+ min(c3 ,
 = 350.14
[in2]
ACI 318-19
Fig. R17.7.2.1b
1.5ca1)]x min(1.5ca1 , ha )

 
Projected area of single anchor failure surface
AVco
 = 4.5 c2a1
 = 406.13
[in2]
ACI 318-19 17.7.2.1.3
 
No of front anchors resisting shear
nbd
 = 
 = 2

Projected area of anchor group failure surface
AVc
 = min( AVc1 , nbd AVco )
 = 350.14
[in2]
ACI 318-19 17.7.2.1.1


Anchor embedment & diameter
hef
 = 60.000
[in]
da
 = 2.000
[in]

Load-bearing length of anchor for shear
le
 = min( 8da , hef )
 = 16.000
[in]
ACI 318-19 17.7.2.2.1
Anchor edge distance & diameter
ca1
 = 9.500
[in]
da
 = 2.000
[in]

Conc strength & lightweight factor
fc
 = 4.0
[ksi]
λ
 = 1.0

 
Vb1
 = 7(
le/da
)0.2da λ fc c1.5a1
 = 27.79
[kips]
ACI 318-19 17.7.2.2.1a
Vb2
 = 9 λ fc c1.5a1
 = 16.67
[kips]
ACI 318-19 17.7.2.2.1b
 
Single anchor shear breakout strength
Vb
 = min( Vb1 , Vb2 )
 = 16.67
[kips]
ACI 318-19 17.7.2.2.1


Eccentricity modification factor
Ψec,V
 = shear acts through center of group
 = 1.00
ACI 318-19 17.7.2.3.1
Edge modification factor
Ψed,V
 = 1.0 for shear parallel to an edge case
 = 1.000
ACI 318-19
Fig. R17.7.2.1b Case 2
Conc cracking modification factor
Ψc,V
 = 
 = 1.20
ACI 318-19 17.7.2.5.1
 
Anchor edge distance & conc thickness
ca1
 = 9.500
[in]
ha
 = 216.000
[in]

Conc breakout thickness factor
Ψh,V
 = (
1.5ca1/ha
)0.5 ≥ 1.0
 = 1.00
ACI 318-19 17.7.2.6.1


 
For Mode 2  Vcbg-p1 is supposed to check against 0.5Vu  ,  in terms of utilization ratio  
0.5Vu/Vcbg-p1
  = 
Vu/2Vcbg-p1
 
Strength reduction factor
φvc
 = 0.75
  supplementary reinft present
ACI 318-19 17.5.3(b)
Concrete breakout resistance
Vcbg-p2
 = 2x φvc
AVc/AVco
Ψec,V Ψed,V Ψc,V Ψh,V Vb
 = 25.86
[kips]
ACI 318-19 17.7.2.1b
 


 
Mode 3 Shear taken evenly by front anchor bolts, strength check against 0.5 x Vu
 
Anchor edge distance
ca1
 = min( c2 , c4 )
 = 9.500
[in]

Limiting ca1 when anchors are influenced by 3 or more edges
 = No
ACI 318-19 17.7.2.1.2
Anchor edge distance - adjusted
ca1
 = ca1 needs NOT to be adjusted
 = 9.500
[in]

c1
 = 19.125
[in]
c3
 = 10.321
[in]

s1
 = 14.500
[in]
1.5ca1
 = 14.250
[in]

AVc1
 = [min(c1 ,1.5ca1 )+ min(s1+c3 ,
 = 406.13
[in2]
ACI 318-19
Fig. R17.7.2.1b
1.5ca1)] x min(1.5ca1 , ha )

 
Projected area of single anchor failure surface
AVco
 = 4.5 c2a1
 = 406.13
[in2]
ACI 318-19 17.7.2.1.3
 
No of front anchors resisting shear
nbd
 = 
 = 2

Projected area of anchor group failure surface
AVc
 = min( AVc1 , nbd AVco )
 = 406.13
[in2]
ACI 318-19 17.7.2.1.1


Anchor embedment & diameter
hef
 = 60.000
[in]
da
 = 2.000
[in]

Load-bearing length of anchor for shear
le
 = min( 8da , hef )
 = 16.000
[in]
ACI 318-19 17.7.2.2.1
Anchor edge distance & diameter
ca1
 = 9.500
[in]
da
 = 2.000
[in]

Conc strength & lightweight factor
fc
 = 4.0
[ksi]
λ
 = 1.0

 
Vb1
 = 7(
le/da
)0.2da λ fc c1.5a1
 = 27.79
[kips]
ACI 318-19 17.7.2.2.1a
Vb2
 = 9 λ fc c1.5a1
 = 16.67
[kips]
ACI 318-19 17.7.2.2.1b
 
Single anchor shear breakout strength
Vb
 = min( Vb1 , Vb2 )
 = 16.67
[kips]
ACI 318-19 17.7.2.2.1


Eccentricity modification factor
Ψec,V
 = shear acts through center of group
 = 1.00
ACI 318-19 17.7.2.3.1
Edge modification factor
Ψed,V
 = 1.0 for shear parallel to an edge case
 = 1.000
ACI 318-19
Fig. R17.7.2.1b Case 2
Conc cracking modification factor
Ψc,V
 = 
 = 1.20
ACI 318-19 17.7.2.5.1
 
Anchor edge distance & conc thickness
ca1
 = 9.500
[in]
ha
 = 216.000
[in]

Conc breakout thickness factor
Ψh,V
 = (
1.5ca1/ha
)0.5 ≥ 1.0
 = 1.00
ACI 318-19 17.7.2.6.1


 
For Mode 3  Vcbg-p1 is supposed to check against 0.5Vu  ,  in terms of utilization ratio  
0.5Vu/Vcbg-p1
  = 
Vu/2Vcbg-p1
 
Strength reduction factor
φvc
 = 0.75
  supplementary reinft present
ACI 318-19 17.5.3(b)
Concrete breakout resistance
Vcbg-p3
 = 2x φvc
AVc/AVco
Ψec,V Ψed,V Ψc,V Ψh,V Vb
 = 30.00
[kips]
ACI 318-19 17.7.2.1b
 


 
 
Shear force in demand
Vu
 = from user input
 = 1.50
[kips]

 
Min shear breakout resistance - parallel to edge
φvc Vcbg-p
 = min(Vcbg-p1 , Vcbg-p2 , Vcbg-p3 ) x2 side
 = 51.73
[kips]

 
ratio
 = 0.03
 > Vu
OK
 
Concrete Pryout Shear Resistance
ratio = 1.5 / 74.2
0.02
PASS
 
Shear load on anchor group
Vu
 = from user load input
 = 1.50
[kips]

 
Anchor embedment depth-adjusted
hef
 = from Anchor Forces Calculation above
 = 12.750
[in]

kcp
 = 2.0
ACI 318-19 17.7.3.1 (b)
Concrete breakout resistance
Ncbg
 = from above calculation
 = 53.01
[kips]

Strength reduction factor
φvc
 = 0.7
 pryout strength is always Condition B
17.5.3(c)
φvc Vcpg
 = φvc kcp Ncbg
 = 74.21
[kips]
ACI 318-19 17.7.3.1b
 
ratio
 = 0.02
 > Vu
OK
 
 
Anchor Group Governing Shear Resistance
 
Anchor group governing shear resistance is the minimum value of the resistance values in
the following limit states
 
Anchor rod shear resistance
φ Vsa
 = from anchor rod shear calc above
 = 135.72
[kips]

 
Anchor conc shear breakout resistance - perpendicular to edge
φ Vcbg
 = from anchor conc breakout calc above
 = 21.99
[kips]

 
Anchor conc shear breakout resistance - parallel to edge
φ Vcbg-p
 = from anchor conc breakout calc above
 = 51.73
[kips]

 
Anchor conc shear pryout resistance
φ Vcpg
 = from anchor conc pryout calc above
 = 74.21
[kips]

 
Anchor group governing shear resistance
φ Vn
 = minimum of above values
 = 21.99
[kips]

 
 
Anchor Tension and Shear Interaction
ratio = 0.00 / 1.20
0.00
PASS
 
Anchor group tensile load
Nu
 = from Anchor Forces Calculation above
 = 34.58
[kips]

Anchor group shear load
Vu
 = from user load input
 = 1.50
[kips]

 
Anchor group governing tensile resistance
φ Nn
 = from calc in above section
 = 39.75
[kips]

Anchor group governing shear resistance
φ Vn
 = from calc in above section
 = 21.99
[kips]



 
Consider anchor tension-shear interaction     check if
Nu/φ Nn
> 0.2   and  
Vu/φ Vn
> 0.2
 = No
ACI 318-19 17.8.3
 
anchor tension-shear interaction can be neglected
 
 = 
Nu/φ Nn
+
Vu/φ Vn
 = 0.00
ACI 318-19 17.8.3
ratio
 = 0.00
 < 1.2
OK
ACI 318-19 17.8.3
 
 
Anchor Seismic Design
N/A
 
Seismic - Tension
    Not Applicable
ACI 318-19 17.10.5.1
 
Seismic SDC < C or E <= 0.2U , additional seismic requirements in ACI 318-19 17.10.5.3 is NOT required
ACI 318-19 17.10.5.3
 
 
Seismic - Shear
    Not Applicable
ACI 318-19 17.10.6.1
 
 
Seismic SDC < C or E <= 0.2U , additional seismic requirements in ACI 318-19 17.10.6.3 is NOT required
ACI 318-19 17.10.6.3
 
 
 
 

  Base Plate - Load Case 1     P + Mx
    Pc =3.9 kip     Mx =79.0 kip-ft
Code=ACI 318-19

Result Summary
geometries & weld limitations = PASS
limit states max ratio 
0.86
PASS
 
 
Minimum Base Plate Thickness for Rigidity
ratio = 2.575 / 3.000
0.86
PASS
 
Please note this check is NOT a code required check. It's a check to meet the design assumption only
 
To ensure that base plate is rigid and anchor tensile forces are elastic linearly distributed, the base plate thickness ideally to be thicker than the 1/4 of overhangs beyond yield line in both directions as indicated on the right sketch.
 
User can turn this check On/Off in Anchor Bolt - Config & Setting by checking or unchecking the option of Min base plate thickness tp ≥ max of base plate overhangs m/4 and n/4
 


Column sect Custom Sect
d
 = 18.000
[in]
bf
 = 18.000
[in]

Base plate width & depth
B
 = 35.000
[in]
N
 = 33.000
[in]

 
AISC Design Guide 1 - 3.1.2 on Page 15
Base plate cantilever dimension
m
 = ( N - 0.8 d ) / 2
 = 9.300
[in]
n
 = ( B - 0.8 bf ) / 2
 = 10.300
[in]
 
Base plate thickness
tp
 = from user input
 = 3.000
[in]
 
Suggested minimum base plate thickness for rigidity
tmin
 = max ( m/4 , n/4 )
 = 2.575
[in]

ratio
 = 0.86
 < tp
OK
 
 
Base Plate Thickness Check
ratio = 0.930 / 3.000
0.31
PASS
 
User can refer to Anchor Forces Calculation in Anchor Bolt calculation section for details of max anchor tensile load T1 and conc stress fp(max) calculation. T1 and fp(max) are used below to check base plate thickness.
 
Anchor Rod Steel Tensile Capacity
 
Bolt line 1 - single anchor T1
T1
 = 12.20
[kips]
n1
 = 1

Sum of all anchors tensile force along bolt line 1
Tu
 = n1 x T1
 = 12.20
[kips]

 
Anchor rod effective section area
Ase
 = 2.50
[in2]
futa
 = 58.0
[ksi]

Strength reduction factor
φts
 = 0.75
ACI 318-19 17.5.3(a)
Anchor rod tensile resistance
Tr
 = φts nt Ase futa
 = 108.75
[kips]
ACI 318-19 17.6.1.2
ratio
 = 0.11
 > Tu
OK
 
Base Plate Flexure Caused by Anchor Rod Tension
AISC Design Guide 1
 
Circular anchor bolt circle dia & column OD
Dbc
 = 29.000
[in]
OD
 = 18.000
[in]

Max anchors tensile force
Tu
 = T1
 = 12.20
[kips]

Tu to CHS wall moment lever arm
x
 = 0.5 ( Dbc - OD )
 = 5.500
[in]

 
Base plate width & strength
B
 = 11.000
[in]
Fy
 = 50.0
[ksi]

 
treq-t
 = 2.11 (
Tu x/B Fy
)0.5
 = 0.737
[in]
Eq 3.4.7a
 
Base Plate Flexure Caused by Conc Bearing Pressure
 
 
 
Circular anchor bolt circle dia & base plate dia
Dbc
 = 29.000
[in]
Dbp
 = 35.000
[in]

Column sect Custom Sect
OD
 = 18.000
[in]

 


Full Bearing Stress Geometrics When Ignoring CHS Column
 
Factored forces on base plate
Pu
 = 3.90
[kips]
Mu
 = 79.00
[kip-ft]

Eccentricity
e
 = Mu / Pu
 = 243.077
[in]

Critical eccentricity
ecrit
 = from Anchor Forces Calculation
 = 17.335
[in]

 
when e > ecrit  , large moment case applied. There are tensile forces mobolized in anchors and max allowed concrete bearing stress fp(max) will be used to calculate base plate bending moment.
 
 
Full stress block length Y and angle under base plate
 
Stress block length and angle at Y
Y
 = 1.373
[in]
α
 = 22.850

Stress block area & centroid to CHS column center distance
A
 = 12.54
[in2]
cy
 = 16.678
[in]

 
Pedestal max bearing stress
fp(max)
 = from Anchor Forces Calculation
 = 3.031
[ksi]



Bearing Stress Geometrics When Consider Bending to CHS Column Wall
 
Base plate overhang
m
 = 0.5 ( Dbp - OD )
 = 8.500
[in]

 
When Y<= m , all stress under base plate contributes to the base plate bending
Base plate width for bending to CHS column wall edge
B
 = 
 = 30.017
[in]

 
Stress block area & stress resultant to CHS wall edge distance
A
 = 12.54
[in2]
dc
 = 7.678
[in]

 
Resistance moment by concrete stress resultant reaction
Mrc
 = fp(max) A dc
 = 24.32
[kip-ft]



Base plate strength & strength reduction factor
Fy
 = 50.0
[ksi]
φb
 = 0.90

 
treq-b1
 = 2.11 (
Mrc/B Fy
)0.5
 = 0.930
[in]

Base plate thickness
tp
 = from user input
 = 3.000
[in]

 
Min required plate thickness
tmin
 = max ( treq-t , treq-b1 )
 = 0.930
[in]

ratio
 = 0.31
 < tp
OK