Result Summary - Overall
Anchorage Design
Code=ACI 318-19

Result Summary - Overall
geometries & weld limitations = PASS
limit states max ratio 
0.19
PASS
 
Vertical Vessel Leg Anchor
geometries & weld limitations = PASS
limit states max ratio 
0.06
PASS


 
Vertical Vessel Leg Shear Key
geometries & weld limitations = PASS
limit states max ratio 
0.19
PASS


 
Vertical Vessel Leg Base Plate
geometries & weld limitations = PASS
limit states max ratio 
0.13
PASS
 
 
 

  Sketch
Anchorage Design
Code=ACI 318-19

 
 
 
Vertical Vessel Anchor Forces Calculation
 
Max Tensile / Shear Load on Vertical Vessel Single Pedestal Leg
 
Anchor bolt bolt circle diameter
Dbc
 = from user input
 = 605.98
[in]

No of pedestal leg
Na
 = from user input
 = 9

 
Circular pattern leg section modulus
S
 = 
 = 1363.46
[in]

Factored single leg shear load
Vua
 = 
Vu/Na
 = 7.00
[kips]



 
Anchor Tensile - Uplift LCB by Wind
Factored base moment - wind
Muw
 = from user input
 = 1158.7
[kip-ft]

Vessel empty weight
De
 = from user input
 = 490.50
[kips]

 
When
Muw/S
< 0.9
De/Na
, there is no tensile load mobilized on anchor
Factored single leg tensile load
Nuaw
 = 
Muw/S
- 0.9
De/Na
 = 0.00
[kips]



 
Anchor Tensile - Uplift LCB by Seismic
Factored base moment - seismic
Mus
 = from user input
 = 62227.0
[kip-ft]

Vessel operating weight
Do
 = from user input
 = 5411.3
[kips]

 
Factored single leg tensile load
Nuas
 = 
Mus/S
- 0.9
Do/Na
 = 6.54
[kips]



 
Factored single anchor tensile load - max
Nua
 = max ( Nuaw , Nuas )
 = 6.54
[kips]

 
 
 
Anchor Forces Calculation
 


Anchor Tensile Force Calculation


 
User Input
 
 
 
Anchor edge distance
c1u
 = 7.500
[in]
c2u
 = 7.500
[in]
c3u
 = 7.500
[in]
c4u
 = 7.500
[in]
 
Anchor out-out spacing
s1u
 = 43.000
[in]
s2u
 = 43.000
[in]
 
Anchor embedment depth
hef
 = 31.500
[in]
 
Anchor Load on Vertical Vessel Pedestal Leg
 
Refer to Vertical Vessel Anchor Forces Calculation for details
of anchor forces calculation shown below
 
 
Axial force
Axial P
 = -6.54
[kips]
  in tension
 
Shear forces
Vy
 = 7.00
[kips]
Vx
 = 0.00
[kips]
 
Moment forces
Mx
 = 0.00
[kip-ft]
My
 = 0.00
[kip-ft]
Anchor Layout Plan
 
Load Case 1 - Anchor Additional Tension From Moment Caused by Vy
 
 
Shear key shear force
Vu
 = from ver vessel anchor load calc
 = 7.00
[kips]

 
Refer to sketch below , shear key's shear reaction takes moment to base plate center line and this moment will cause additional tensile force on anchors
 
 
Base plate & grout thickness
tp
 = 1.500
[in]
g
 = 1.500
[in]

Shear key depth
dsk
 = 3.000
[in]

Shear key shear V to base plate center moment arm distance
dms
 = 0.5( dsk - g) + g + 0.5 tp
 = 3.000
[in]

Moment by shear key shear
Mu
 = Vu dms
 = 1.75
[kip-ft]

 
Anchor out-out spacing - in shear direction
s1
 = from user input
 = 43.000
[in]

Column depth - in shear direction
d
 = sect Custom Sect
 = 36.000
[in]

Exterior anchhor moment arm
dm
 = d + 0.5( s1 - d )
 = 39.500
[in]

 
Anchor number along exterior anchhor
nbw
 = from user input
 = 2

 
Single anchor tension from moment caused by shear key
Tsk
 = 
Mu/dm x nbw
 = 0.27
[kips]

 
 
Load Case 1 - P + Vy + Mx   Reduced hef  Calc
 
 
Anchor Embedment Depth hef  Adjustment


 
Anchor embedment depth hef  - If anchors are located less than 1.5hef  from three or more edges,
hef needs to be shortened as per ACI 318-19  17.6.2.1.2
ACI 318-19 17.6.2.1.2
 


Anchor group edge distances are re-calculated to the most exterior anchors as user input edge distances is edge distances to the bolt circle diameter
 
Anchor Group Dimensions
Anchor bolt circle dia & pedestal dia
Dbc
 = 43.000
[in]
Dpd
 = 58.000
[in]

 
Anchor spacing
s1
 = 39.727
[in]
s2
 = 39.727
[in]

Anchor edge distance
c1
 = 9.137
[in]
c2
 = 9.137
[in]

c3
 = 9.137
[in]
c4
 = 9.137
[in]

 
Max anchor spacing within the group used in effective anchor embedment depth calc
 
Max anchor spacing within the tensile anchors group
s1max
 = 16.455
[in]
s2max
 = 39.727
[in]

 



 
Anchor embedment depth - from user input
hef
 = from user input
 = 31.500
[in]

 
Anchors are located less than 1.5hef from three or more edges
 = Yes

 
Max of edge distances not exceeding 1.5hef
ca,max
 = 
 = 9.137
[in]

 
Max spacing between anchors within the group
s
 = 
 = 39.727
[in]

 
Anchor embedment depth - adjusted
hef
 = max (ca,max /1.5 , s /3)
 = 13.242
[in]
ACI 318-19 17.6.2.1.2
 
 
 

  Vertical Vessel Anchor Bolt
    Pt =-6.5 kip     V =7.0 kip
Code=ACI 318-19

Result Summary
geometries & weld limitations = PASS
limit states max ratio 
0.06
PASS
 
 
Min Anchor Dimensions Check Per PIP STE05121 - Optional
PASS
 
Min Anchor Dimensions Check
 
Check min anchor dimensions as per PIP STE05121 Application of ASCE Anchorage Design for Petrochemical Facilities - 2018   Table 1 as shown below.
 
This check is NOT a code requirement.   User can turn this check On/Off by changing setting at Anchor Bolt --> Anchor Bolt - Config & Setting --> Check min anchor spacing and edge distance as per PIP STE05121 Table 1
 
Anchor Rod Inputs


Anchor rod grade and dia
grade
 = F1554 Gr36
da
 = 2.000
[in]

 
Min Anchor Edge Distance


 
Anchor edge distance
c1
 = 9.137
[in]
c2
 = 9.137
[in]

c3
 = 9.137
[in]
c4
 = 9.137
[in]

 
Min anchor edge distance required
cmin
 = from PIP STE05121 Table 1 below
 = 8.000
[in]
PIP STE05121 Table 1
 
Min anchor edge distance
c
 = min(c1 , c2 , c3 , c4 )
 = 9.137
[in]

 ≥ cmin
OK
Min Anchor Spacing


 
Min anchor spacing required
smin
 = from PIP STE05121 Table 1 below
 = 8.000
[in]
PIP STE05121 Table 1
 
Anchor bolt pattern
 = from user input
 = C2

 
Min anchor spacing
s
 = from user input
 = 16.455
[in]

 ≥ smin
OK
Min Anchor Embedment Depth


 
Min anchor embedment required
hmin
 = from PIP STE05121 Table 1 below
 = 24.000
[in]
PIP STE05121 Table 1
 
Min anchor embedment depth
hef
 = from user input
 = 31.500
[in]

 ≥ hmin
OK
 


 
Table 1 from PIP STE05121 Application of ASCE Anchorage Design for Petrochemical Facilities - 2018
 

 
 
 
Anchor Rod Tensile Resistance
ratio = 1.1 / 108.8
0.01
PASS
 
Anchor rod effective section area
Ase
 = 2.50
[in2]
futa
 = 58.0
[ksi]

Anchor rod steel strength in tension
Nsa
 = Ase futa
 = 145.00
[kips]
ACI 318-19 17.6.1.2
 


 
Max Single Anchor Tensile Force
 
Anchor group axial tensile force
P
 = from user load input
 = -6.54
[kips]
in tension
No of anchors in the group
nt
 = 
 = 8

 
Refer to Anchor Forces Calculation section above , shear key's shear reaction takes moment to base plate center line and this moment will cause additional tensile force on anchors
 
Single anchor tension from moment caused by shear key reaction force
Tsk
 = from Anchor Forces Calculation above
 = 0.27
[kips]
in tension
 
Single anchor tensile force
T
 = Tsk - P / nt
 = 1.08
[kips]



 
Strength reduction factor
φts
 = 0.75
ACI 318-19 17.5.3(a)
φts Nsa
 = 0.75 x 145.00
 = 108.75
[kips]

ratio
 = 0.01
 > T
OK
 
Anchor Concrete Tensile Breakout Resistance
ratio = 6.5 / 104.8
0.06
PASS
 
Anchor embedment depth-adjusted
hef
 = from Anchor Forces Calculation above
 = 13.242
[in]

Conc strength & lightweight conc factor
fc
 = 4.4
[ksi]
λ
 = 1.0
ACI 318-19 17.2.4.1
 
Single anchor concrete breakout strength
Nb
 = 24λ fc h1.5ef If hef < 11" or hef > 25"
 = 78.22
[kips]
ACI 318-19 17.6.2.2.1
16λ fc h5/3ef   If 11" ≤ hef  ≤ 25"
ACI 318-19 17.6.2.2.3
 


 
Circular Bolt Pattern Tensile Anchor Breakout ANC Calculation
 
Refer to Anchor Forces Calculation for details of circular pattern anchor group anchor spacings and edge distances calculation
 
Anchor bolt circle dia & pedestal dia
Dbc
 = 43.000
[in]
Dpd
 = 58.000
[in]

 
Anchor spacing
s1
 = 39.727
[in]
s2
 = 39.727
[in]

Anchor edge distance
c1
 = 9.137
[in]
c2
 = 9.137
[in]

c3
 = 9.137
[in]
c4
 = 9.137
[in]

 
Anchor embedment depth-adjusted
hef
 = from calc above
 = 13.242
[in]
 
Anchor group projected conc failure area
ANC1
 = 
 = 3364.1
[in2]


 
ANco
 = 9 h2ef
 = 1578.2
[in2]
ACI 318-19 17.6.2.1.4
 
No of anchors in the group resisting tension
nt
 = from Anchor Forces Calculation above
 = 8

ANc
 = min( ANc1 , nt ANco )
 = 3364.1
[in2]
ACI 318-19 17.6.2.1.1


Eccentricity modification factor
Ψec,N
 = from Anchor Forces Calculation above
 = 1.000
ACI 318-19 17.6.2.3.1
 
Min edge distance
cmin
 = min(c1 , c2 ,c3 ,c4 )
 = 9.137
[in]

Edge modification factor
Ψed,N
 = min[0.7 +
0.3cmin/1.5hef
, 1.0]
 = 0.838
ACI 318-19 17.6.2.4.1
Conc cracking modification factor
Ψc,N
 = 
 = 1.00
ACI 318-19 17.6.2.5.1
Conc splitting modification factor
Ψcp,N
 = 
 = 1.00
ACI 318-19 17.6.2.6.1
Concrete breakout resistance
Ncbg
 = 
ANc/ANco
Ψec,N Ψed,N Ψc,N Ψcp,N Nb
 = 139.72
[kips]
ACI 318-19 17.6.2.1b
 
Sum of anchors tensile force in anchor group
Nu
 = from Anchor Forces Calculation above
 = 6.54
[kips]

 
Strength reduction factor
φtc
 = 0.75
  supplementary reinft present
ACI 318-19 17.5.3(b)
φtc Ncbg
 = 0.75 x 139.72
 = 104.79
[kips]

 
Seismic design strength reduction
 = x 1.0   not applicable
 = 104.79
[kips]
ACI 318-19 17.10.5.4(b)
 
ratio
 = 0.06
 > Nu
OK
 
Anchor Pullout Resistance
ratio = 1.1 / 129.5
0.01
PASS
 
Anchor head net bearing area & conc strength
Abrg
 = 5.32
[in2]
fc
 = 4.4
[ksi]

Single bolt pullout resistance
Np
 = 8 Abrg fc
 = 185.00
[kips]
ACI 318-19 17.6.3.2.2a
Pullout cracking factor
ΨcP
 = for cracked concrete
 = 1.00
ACI 318-19 17.6.3.3.1(b)
 


 
Max Single Anchor Tensile Force
 
Anchor group axial tensile force
P
 = from user load input
 = -6.54
[kips]
in tension
No of anchors in the group
nt
 = 
 = 8

 
Refer to Anchor Forces Calculation section above , shear key's shear reaction takes moment to base plate center line and this moment will cause additional tensile force on anchors
 
Single anchor tension from moment caused by shear key reaction force
Tsk
 = from Anchor Forces Calculation above
 = 0.27
[kips]
in tension
 
Single anchor tensile force
T
 = Tsk - P / nt
 = 1.08
[kips]



 
Strength reduction factor
φtc
 = 0.70
 pullout strength is always Condition B
ACI 318-19 17.5.3(c)
φtc Npn
 = φtc ΨcP Np
 = 129.50
[kips]

 
Seismic design strength reduction
 = x 1.0   not applicable
 = 129.50
[kips]
ACI 318-19 17.10.5.4(c)
 
ratio
 = 0.01
 > T
OK
 
Anchor Side Blowout Resistance
ratio = 1.1 / 83.4
0.01
PASS
Anchor Inputs


Anchor edge distance
c1
 = 9.137
[in]
c2
 = 9.137
[in]

c3
 = 9.137
[in]
c4
 = 9.137
[in]

 
Anchor out-out spacing
s1
 = 39.727
[in]
s2
 = 39.727
[in]




 
Side Edges Along X-X Axis - Width Edges
 
Anchor edge distance in Y direction
ca1
 = min (c1 , c3 )
 = 9.137
[in]

Anchor embedment depth
hef
 = from user input
 = 31.500
[in]

 
Side blowout check is required on this edge or not
 = check if hef > 2.5 ca1
 = True
ACI 318-19 17.6.4.1
 
Side blowout check is required
ACI 318-19 17.6.4.1
 
Anchor out-out distance edges along X direction
s2
 = from user input
 = 39.727
[in]

Anchor number along X direction
nw
 = from user input
 = 2

 
Anchor head net bearing area & conc strength
Abrg
 = 5.32
[in2]
fc
 = 4.4
[ksi]

Lightweight conc modification factor
λ
 = 1.0
ACI 318-19 17.2.4.1
 
Single anchor side blowout capacity
Nsb
 = 160 ca1 Abrg λ fc
 = 222.31
[kips]
ACI 318-19 17.6.4.1
 
For multiple anchors along the edge, check if the anchor spacing is close enough so that side
blowout capacity shall be calculated as a group
ACI 318-19 17.6.4.2
 
 
Anchor spacing along X-X edges
sb
 = s2 / (nw - 1)
 = 39.727
[in]

 
Multiple tensile anchors space close and work as group or not
 = check if sb < 6 ca1
 = True
ACI 318-19 17.6.4.2
 
Multiple anchors group factor
 = 1 +
s2/6ca1
 = 1.72
ACI 318-19 17.6.4.2
 
Group anchor side blowout capacity
Nsbg
 = (1 +
s2/6ca1
) Nsb
 = 383.41
[kips]

 


 
Max Single Anchor Tensile Force
 
Anchor group axial tensile force
P
 = from user load input
 = -6.54
[kips]
in tension
No of anchors in the group
nt
 = 
 = 8

 
Refer to Anchor Forces Calculation section above , shear key's shear reaction takes moment to base plate center line and this moment will cause additional tensile force on anchors
 
Single anchor tension from moment caused by shear key reaction force
Tsk
 = from Anchor Forces Calculation above
 = 0.27
[kips]
in tension
 
Single anchor tensile force
T
 = Tsk - P / nt
 = 1.08
[kips]



No of anchors along side blowout edge
nbw
 = from user input
 = 2

 
Tensile force - anchors along potential blowout edge
Tw
 = nbw x T
 = 2.17
[kips]



 
Strength reduction factor
φtc
 = 0.75
  supplementary reinft present
ACI 318-19 17.5.3(b)
φtc Nsbg
 = 0.75 x 383.41
 = 287.56
[kips]

 
Seismic design strength reduction
 = x 1.0   not applicable
 = 287.56
[kips]
ACI 318-19 17.10.5.4(d)
 
ratio
 = 0.01
 > Tw
OK
 
When there are tensile anchors in the group which are not located on blowout edge, we need to use edge
anchors capacity above to work out anchor group tensile capacity
 
Group anchor no & no of anchor along blowout edge
nt
 = 8
nbw
 = 2

 
Group anchor tensile side blowout capacity
 = 287.56
nt/nbw
 = 1150.2
[kips]

 
Side Edges Along Y-Y Axis - Depth Edges
 
Anchor edge distance in X direction
ca2
 = min (c2 , c4 )
 = 9.137
[in]

Anchor embedment depth
hef
 = from user input
 = 31.500
[in]

 
Side blowout check is required on this edge or not
 = check if hef > 2.5 ca2
 = True
ACI 318-19 17.6.4.1
 
Side blowout check is required
ACI 318-19 17.6.4.1
 
Anchor out-out distance edges along X direction
s1
 = from user input
 = 39.727
[in]

Anchor number along X direction
nd
 = from user input
 = 2

 
Anchor head net bearing area & conc strength
Abrg
 = 5.32
[in2]
fc
 = 4.4
[ksi]

Lightweight conc modification factor
λ
 = 1.0
ACI 318-19 17.2.4.1
 
Single anchor side blowout capacity
Nsb
 = 160 ca2 Abrg λ fc
 = 222.31
[kips]
ACI 318-19 17.6.4.1
 
For multiple anchors along the edge, check if the anchor spacing is close enough so that side
blowout capacity shall be calculated as a group
ACI 318-19 17.6.4.2
 
 
Anchor spacing along Y-Y edges
sb
 = s1 / (nd - 1)
 = 39.727
[in]

 
Multiple tensile anchors space close and work as group or not
 = check if sb < 6 ca2
 = True
ACI 318-19 17.6.4.2
 
Multiple anchors group factor
 = 1 +
s1/6ca2
 = 1.72
ACI 318-19 17.6.4.2
 
Group anchor side blowout capacity
Nsbg
 = (1 +
s1/6ca2
) Nsb
 = 383.41
[kips]

 


 
Max Single Anchor Tensile Force
 
Anchor group axial tensile force
P
 = from user load input
 = -6.54
[kips]
in tension
No of anchors in the group
nt
 = 
 = 8

 
Refer to Anchor Forces Calculation section above , shear key's shear reaction takes moment to base plate center line and this moment will cause additional tensile force on anchors
 
Single anchor tension from moment caused by shear key reaction force
Tsk
 = from Anchor Forces Calculation above
 = 0.27
[kips]
in tension
 
Single anchor tensile force
T
 = Tsk - P / nt
 = 1.08
[kips]



No of anchors along side blowout edge
nbd
 = from user input
 = 2

 
Tensile force - anchors along potential blowout edge
Td
 = nbd x T
 = 2.17
[kips]



 
Strength reduction factor
φtc
 = 0.75
  supplementary reinft present
ACI 318-19 17.5.3(b)
φtc Nsbg
 = 0.75 x 383.41
 = 287.56
[kips]

 
Seismic design strength reduction
 = x 1.0   not applicable
 = 287.56
[kips]
ACI 318-19 17.10.5.4(d)
 
ratio
 = 0.01
 > Td
OK
 
When there are tensile anchors in the group which are not located on blowout edge, we need to use edge
anchors capacity above to work out anchor group tensile capacity
 
Group anchor no & no of anchor along blowout edge
nt
 = 8
nbd
 = 2

 
Group anchor tensile side blowout capacity
 = 287.56
nt/nbd
 = 1150.2
[kips]

 
Corner Single Anchor Side Blowout
 
 
Check on corner single anchor side blowout capacity considering the corner effect factor
as per ACI 318-19 17.6.4.1.1
ACI 318-19 17.6.4.1.1
 
Anchor edge distance
ca1
 = min (c1 , c3 )
 = 9.137
[in]

ca2
 = min (c2 , c4 )
 = 9.137
[in]

 
Consider corner effect or not
 = check if ca2 < 3 ca1
 = True
ACI 318-19 17.6.4.1.1
Single anchor side blowout capacity
Nsb1
 = (1 +
ca2/ca1
) /4 x Nsb
 = 111.16
[kips]

 


 
Max Single Anchor Tensile Force
 
Anchor group axial tensile force
P
 = from user load input
 = -6.54
[kips]
in tension
No of anchors in the group
nt
 = 
 = 8

 
Refer to Anchor Forces Calculation section above , shear key's shear reaction takes moment to base plate center line and this moment will cause additional tensile force on anchors
 
Single anchor tension from moment caused by shear key reaction force
Tsk
 = from Anchor Forces Calculation above
 = 0.27
[kips]
in tension
 
Single anchor tensile force
T
 = Tsk - P / nt
 = 1.08
[kips]



 
Strength reduction factor
φtc
 = 0.75
  supplementary reinft present
ACI 318-19 17.5.3(b)
φtc Nsb
 = 0.75 x 111.16
 = 83.37
[kips]

 
Seismic design strength reduction
 = x 1.0   not applicable
 = 83.37
[kips]
ACI 318-19 17.10.5.4(d)
 
ratio
 = 0.01
 > T1
OK
 
 
Anchor Group Governing Tensile Resistance
 
Anchor group governing tensile resistance is the minimum value of the resistance values in
the following limit states
 
No of anchors in anchor group
resisting tension
nt
 = from Anchor Forces Calculation above
 = 8

 
Anchor rod tensile resistance
nt φ Nsa
 = 8 x 108.75
 = 870.00
[kips]

 
Anchor concrete breakout resistance
φ Ncbg
 = from anchor conc breakout calc above
 = 104.79
[kips]

 
Anchor pullout resistance
nt φ Npm
 = 8 x 129.50
 = 1036.0
[kips]

 
Anchor side blowout resistance
φ Nsbg
 = from anchor side blowout calc above
 = 1150.2
[kips]

 
Anchor group governing tensile resistance
φ Nn
 = minimum of above values
 = 104.79
[kips]

 
 
Anchor Shear Resistance and Tension - Shear Interaction
N/A
 
There is no shear load from user load input or shear key is used and all shear is taken by shear key, so
Anchor Shear Resistance and Tension - Shear Interaction checks are Not Applicable
 
 
 
Anchor Seismic Design
N/A
 
Seismic - Tension
    Not Applicable
ACI 318-19 17.10.5.1
 
Seismic SDC < C or E <= 0.2U , additional seismic requirements in ACI 318-19 17.10.5.3 is NOT required
ACI 318-19 17.10.5.3
 
 
Seismic - Shear
    Not Applicable
ACI 318-19 17.10.6.1
 
There is no shear load applied to anchor/anchor group, so Seismic Shear check is NOT required
 
 
 
 

  Shear Key - Load Case 1     Vy
    Pt =6.5 kip     Vy =7.0 kip
Code=ACI 318-19

Result Summary
geometries & weld limitations = PASS
limit states max ratio 
0.19
PASS
 
 
Shear Key Dimensions Check
PASS
 


Shear Lug Dimensions
 
Shear lug embedment depth and grout thickness
dsl
 = 3.000
[in]
g
 = 1.500
[in]

Shear lug embedment depth excluding grout
hsl
 = dsl - g
 = 1.500
[in]
 
Anchor out-out spacing in shear direction
s1
 = from user input
 = 39.727
[in]
 
csl is anchor center to shear lug center distance in shear direction, when there are
more than one row of anchor, take the average distance of multiple rows of anchor
 
Anchor center to shear lug center distance in shear direction
csl
 = 0.25 Dbc
 = 10.750
[in]
 
Anchor embedment depth
hef
 = from user input
 = 31.500
[in]
 


ACI 318-19 Fig. R17.11.1.1a

 
Check if hef / hsl ≥ 2.5
 = hef / hsl
 = 21.00
ACI 318-19
 ≥ 2.5
OK
17.11.1.1.8 (a)
 
Check if hef / csl ≥ 2.5
 = hef / csl
 = 2.93

 ≥ 2.5
OK
17.11.1.1.8 (b)
 
 
 
Shear Key Conc Breakout Strength
ratio = 7.0 / 36.1
0.19
PASS
 
Conc. Shear Breakout Resistance - Perpendicular To Edge
 
 
 


Anchor Dimensions
Anchor edge distance
c1b
 = 9.137
[in]
c2b
 = 9.137
[in]

c3b
 = 9.137
[in]
c4b
 = 9.137
[in]

 
Anchor out-out spacing
s1b
 = 39.727
[in]
s2b
 = 39.727
[in]

 


Shear Lug Dimensions
 
Shear lug width & depth
bsl
 = 32.000
[in]
dsl
 = 0.750
[in]

 
Shear lug embed depth
d
 = from user input
 = 3.000
[in]
Grout thickness
g
 = from user input
 = 1.500
[in]
Shear lug effective height
hef,sl
 = d - g
 = 1.500
[in]
Shear lug effective area
Aef,sl
 = bsl x hef,sl
 = 48.00
[in2]
 
Shear lug edge distance
c1
 = 28.626
[in]
c2
 = 13.001
[in]

c3
 = 28.626
[in]
c4
 = 13.001
[in]

 


ACI 318-19 Fig. R17.11.3.1

 
Shear lug edge distance
c1
 = from user input
 = 28.626
[in]

 
Limiting ca1 when anchors are influenced by 3 or more edges
 = Yes
ACI 318-19 17.7.2.1.2
 
Shear lug edge distance - adjusted
ca1
 = c1 needs to be adjusted
 = 26.667
[in]

bsl
 = 32.000
[in]
1.5c1
 = 40.000
[in]

 
AVc1
 = [min(c2 ,1.5c1 )+bsl +min(c4 ,1.5c1 )]x
 = 2272.0
[in2]
ACI 318-19 17.11.3.1.1
min( hef,sl + 1.5ca1 , ha ) - Aef,sl

 
Projected area of single anchor failure surface
AVco
 = 4.5 c2a1
 = 3200.0
[in2]
ACI 318-19 17.7.2.1.3
 
Projected area of anchor group failure surface
AVc
 = min( AVc1 , 1 x AVco )
 = 2272.0
[in2]
ACI 318-19 17.7.2.1.1


Shear lug edge distance
ca1
 = 26.667
[in]

Conc strength & lightweight factor
fc
 = 4.4
[ksi]
λ
 = 1.0

 
Shear lug shear breakout strength
Vb
 = 9 λ fc c1.5a1
 = 81.74
[kips]
ACI 318-19 17.11.3.1
ACI 318-19 17.7.2.2.1b
 


Eccentricity modification factor
Ψec,V
 = shear acts through center of group
 = 1.00
ACI 318-19 17.7.2.3.1
Edge modification factor
Ψed,V
 = min[ (0.7 + 0.3 c2 / 1.5c1 ), 1.0 ]
 = 0.798
ACI 318-19 17.7.2.4.1
Conc cracking modification factor
Ψc,V
 = 
 = 1.20
ACI 318-19 17.7.2.5.1
 
Shear lug edge distance & conc thickness
ca1
 = 26.667
[in]
ha
 = 40.000
[in]

Conc breakout thickness factor
Ψh,V
 = (
1.5ca1/ha
)0.5 ≥ 1.0
 = 1.00
ACI 318-19 17.7.2.6.1


 
Shear force in demand
Vu
 = from user input
 = 7.00
[kips]

 
Strength reduction factor
φvc
 = 0.65
ACI 318-19 17.11.1.1.6
Concrete breakout resistance
Vcb
 = φvc
AVc/AVco
Ψec,V Ψed,V Ψc,V Ψh,V Vb
 = 36.10
[kips]
ACI 318-19 17.7.2.1b
 
ratio
 = 0.19
 > Vu
OK
 
Conc. Shear Breakout Resistance - Parallel To Edge
 
 
Shear lug edge distance
ca1
 = min( c2 , c4 )
 = 13.001
[in]

 
Limiting ca1 when anchors are influenced by 3 or more edges
 = No
ACI 318-19 17.7.2.1.2
 
Shear lug edge distance - adjusted
ca1
 = c1 needs NOT to be adjusted
 = 13.001
[in]

c1
 = 28.626
[in]
c3
 = 28.626
[in]

dsl
 = 0.750
[in]
1.5ca1
 = 19.501
[in]

 
AVc1
 = [min(c1 ,1.5ca1)+dsl +min(c3 ,1.5ca1)]x
 = 833.69
[in2]
ACI 318-19 17.11.3.1.1
min( hef,sl + 1.5ca1 , ha ) - Aef,sl

 
Projected area of single anchor failure surface
AVco
 = 4.5 c2a1
 = 760.56
[in2]
ACI 318-19 17.7.2.1.3
 
Projected area of anchor group failure surface
AVc
 = min( AVc1 , 1 x AVco )
 = 760.56
[in2]
ACI 318-19 17.7.2.1.1


Shear lug edge distance
ca1
 = 13.001
[in]

Conc strength & lightweight factor
fc
 = 4.4
[ksi]
λ
 = 1.0

 
Shear lug shear breakout strength
Vb
 = 9 λ fc c1.5a1
 = 27.82
[kips]
ACI 318-19 17.11.3.1
ACI 318-19 17.7.2.2.1b
 


Eccentricity modification factor
Ψec,V
 = shear acts through center of group
 = 1.00
ACI 318-19 17.7.2.3.1
Edge modification factor
Ψed,V
 = 1.0 for shear parallel to an edge case
 = 1.000
ACI 318-19 17.7.2.1 (c)
Conc cracking modification factor
Ψc,V
 = 
 = 1.20
ACI 318-19 17.7.2.5.1
 
Shear lug edge distance & conc thickness
ca1
 = 13.001
[in]
ha
 = 40.000
[in]

Conc breakout thickness factor
Ψh,V
 = (
1.5ca1/ha
)0.5 ≥ 1.0
 = 1.00
ACI 318-19 17.7.2.6.1


 
Shear force in demand
Vu
 = from user input
 = 7.00
[kips]

Strength reduction factor
φvc
 = 0.65
ACI 318-19 17.11.1.1.6
 
For shear parallel to an edge, Vcb-p shall be permitted to be twice the value of the shear
perpendicular to an edge Vcb
ACI 318-19 17.7.2.1 (c)
 
Concrete breakout resistance
Vcb-p
 = 2x φvc
AVc/AVco
Ψec,V Ψed,V Ψc,V Ψh,V Vb
 = 43.41
[kips]
ACI 318-19 17.11.3.2
 
ratio
 = 0.16
 > Vu
OK
 
Shear Key Conc Bearing Strength
ratio = 7.00 / 229.42
0.03
PASS
Shear lug sect - cross plate
w
 = 32.000
[in]
tp
 = 0.750
[in]

 
Shear lug embed depth
d
 = from user input
 = 3.000
[in]

Grout thickness
g
 = from user input
 = 1.500
[in]

Conc compressive strength
fc
 = from user input
 = 4.4
[ksi]



Shear Lug Bearing Factor
 
Anchor rod effective section area
Ase
 = 2.50
[in2]
futa
 = 58.0
[ksi]

Anchor rod steel strength in tension
Nsa
 = Ase futa
 = 145.00
[kips]
ACI 318-19 17.6.1.2
No of anchors in tension
nt
 = 
 = 8

Tensile load in anchor group
Pu
 = from user load input
 = -6.54
[kips]

Shear lug bearing factor
Ψb,sl
 = 1 +
Pu/nt Nsa
≤ 1.0
 = 0.99
ACI 318-19 17.11.2.2.1a


Shear in Y Direction
Shear in Y direction
Vy
 = from user input
 = 7.00
[kips]

 
Shear lug bearing area
Aef,sl
 = w (d - g )
 = 48.00
[in2]

Shear lug bearing strength
Vb,sl
 = 1.7 fc Aef,sl Ψb,sl
 = 352.96
[kips]
ACI 318-19 17.11.2.1
Resistance factor-LRFD
φ
 = 0.65
ACI 318-19 17.11.1.1.4
φVb,sl
 = 
 = 229.42
[kips]

ratio
 = 0.03
 > Vy
OK
 
Shear Key Flexural Strength
ratio = 1.31 / 736.88
0.00
PASS
Shear key sect - cross plate
w
 = 32.000
[in]
tp
 = 0.750
[in]

Cross plate section modulus
Zs
 = ( tp x w2) / 4 + (w x t2p) / 4
 = 196.50
[in3]

Cross plate section modulus
Zw
 = ( tp x w2) / 4 + (w x t2p) / 4
 = 196.50
[in3]

 
Zs
 = 196.50
[in3]
Zw
 = 196.50
[in3]

Shear key steel yield strength
Fy
 = 50.0
[ksi]

 
Shear key embed depth
d
 = from user input
 = 3.000
[in]

Grout thickness
g
 = from user input
 = 1.500
[in]



Shear Key Flexure in Y Direction
Shear in Y direction
Vy
 = from user input
 = 7.00
[kips]

 
Moment caused by shear
Ms
 = Vy [ g + 0.5(d - g) ]
 = 1.31
[kip-ft]

Shear key flexural capacity
Mn
 = Fy Zs
 = 818.75
[kip-ft]

Resistance factor-LRFD
φ
 = 0.90

φMn
 = 
 = 736.88
[kip-ft]

ratio
 = 0.00
 > Ms
OK
 
Shear Key Shear Strength
ratio = 7.00 / 648.00
0.01
PASS
Shear key sect - cross plate
w
 = 32.000
[in]
tp
 = 0.750
[in]

 
Shear key embed depth
d
 = from user input
 = 3.000
[in]

Grout thickness
g
 = from user input
 = 1.500
[in]

Shear key steel yield strength
Fy
 = 50.0
[ksi]



Shear in Y Direction
Shear in Y direction
Vy
 = from user input
 = 7.00
[kips]

 
Plate shear area
Aw
 = w x tp
 = 24.00
[in2]

 
Shear key shear strength
Vn
 = 0.6 Fy Aw
 = 720.00
[kips]

Resistance factor-LRFD
φ
 = 0.90

φVn
 = 
 = 648.00
[kips]

ratio
 = 0.01
 > Vy
OK
 
 
Shear Key to Base PL Fillet Weld
ratio = 7.00 / 446.04
0.02
PASS
Shear key depth & grout thickness
dsk
 = 3.000
[in]
g
 = 1.500
[in]

Shear key reaction to base plate bottom surface distance
ex
 = 0.5( dsk - g) + g
 = 2.250
[in]

 
Weld Group Forces
Shear V
 = 7.00
[kips]
Axial P
 = 0.00
[kips]  
 
Shear force to base plate ecc
ex
 = 
 = 2.250
[in]

Weld length
L
 = 
 = 32.000
[in]

 
Shear force in demand
Vu
 = from user input
 = 7.00
[kips]



Fillet Weld Strength Calc
Fillet weld leg size
w
 = 516
[in]
load angle θ
 = 0.0
[°]

Electrode strength
FEXX
 = 70.0
[ksi]
strength coeff C1
 = 1.00
AISC 15th  Table 8-3
Number of weld line
n
 = 2   for double fillet

Load angle coefficient
C2
 = ( 1 + 0.5 sin1.5 θ )
 = 1.00
AISC 15th  Page 8-9
Fillet weld shear strength
rw
 = 0.6 (C1 x 70 ksi) 0.707 w n C2
 = 18.56
[kip/in]
AISC 15th  Eq 8-1


Base metal - shear plate
thickness t
 = 0.750
[in]
tensile Fu
 = 65.0
[ksi]

Base metal - shear plate is in shear, shear rupture as per AISC 15th  Eq J4-4 is checked
AISC 15th  J2.4
Base metal shear rupture
rb
 = 0.6 Fu t
 = 29.25
[kip/in]
AISC 15th  Eq J4-4


Weld stress reduction factor due to less base metal strength
C3
 = rb / rw   when rb < rw
 = 1.000



Table 8-4 Coefficient C for Eccentrically Loaded Weld Group
AISC 15th  Table 8-4
a
 = ex / L
 = 0.07

C
 = C value in Table 8-4 when k=0
 = 3.717



Weld coefficients
C
 = 3.717
C1
 = 1.000

C3
 = 1.000

Weld size & length
D
 = 5.000
[1/16]
L
 = 32.000
[in]

 
Weld strength
Rn
 = C C1 C3 D L
 = 594.73
[kips]
AISC 15th  Table 8-4
Resistance factor-LRFD
φ
 = 0.75

φ Rn
 = 
 = 446.04
[kips]

ratio
 = 0.02
 > Vu
OK
 
 
 

  Vertical Vessel Base Plate
    Pt =6.5 kip     Mx =0.0 kip-ft
Code=ACI 318-19

Result Summary
geometries & weld limitations = PASS
limit states max ratio 
0.13
PASS
 
 
Base Plate Thickness Check
ratio = 0.191 / 1.500
0.13
PASS
 
Base Plate Flexure Caused by Anchor Rod Tension
AISC Design Guide 1
 
Circular anchor bolt circle dia & column OD
Dbc
 = 43.000
[in]
OD
 = 36.000
[in]

Max anchors tensile force
Tu
 = T1
 = 0.82
[kips]

Tu to CHS wall moment lever arm
x
 = 0.5 ( Dbc - OD )
 = 3.500
[in]

 
Base plate width & strength
B
 = 7.000
[in]
Fy
 = 50.0
[ksi]

 
Base plate thickness
tp
 = from user input
 = 1.500
[in]

 
treq-t
 = 2.11 (
Tu x/B Fy
)0.5
 = 0.191
[in]
Eq 3.4.7a
ratio
 = 0.13
 < tp
OK